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ABSTRACT

Computers operate at a very low level of abstraction. People think in
terms of higher-level abstractions. Programming languages let people
describe a computation using higher-level abstractions in such a way
that the description can be translated into something a computer can
execute. This translation is performed algorithmically by a program
called a compiler.

This thesis looks at how a compiler carries out this translation for
two very different types of programming languages, the imperative
and the functional. Imperative languages reflect the concept of com-
putation that is built into modern von Neumann computers, while
functional languages conceive of computation as a process of sym-
bolic rewriting. The functional model of computation is utterly differ-
ent from the von Neumann model, but programs written in functional
languages must ultimately run on von Neumann machines.

The thesis focuses throughout on optimizing program representa-
tion for execution on modern von Neumann computers. A case study
of the Glasgow Haskell compiler provides a concrete example of func-

tional language compilation.

Dr. Karsten Henckell

Division of Natural Sciences
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INTRODUCTION

Computers and Programs

Computers are everywhere. Their rapid development, penetration into
more and more aspects of our daily lives, and increasing effect on our
world are the subjects of rumor, discussion, and daily news. What com-
puters can do is simple: we can capture the essential elements of a
computer in an abstract machine whose description takes up maybe
ten pages. Within that concise, abstract specification hide volumes of
details necessary to bring to life the efficient machines that are the won-
der of our time. Computers do very little, but they do it extraordinarily
well.

With computers came programming languages. The computer itself
supports only a rudimentary, primitive language. This language de-
scribes everything in terms of the computer’s hardware. It provides
very few abstractions that hide these implementation details. The de-
velopment of higher-level languages that support a much richer set of
abstractions has been essential to realizing the potential of the com-
puter.

The term PROGRAM is overloaded with meanings. It can refer to a
computer-executable file, a specific application that can run on a vari-
ety of computers using a variety of computer-specific executables, or
the code written in a programming language that is meant to become
one of these other sorts of programs.

The concept that hides behind these different uses is that of the pro-
gram as an idea of a computation, which could be something as ab-
stract as “find derivatives of polynomials.” In reifying this idea, one

must make many implementation decisions. What algorithms should
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be employed? How should we represent the information we are work-
ing with? In answering these questions, we draw on other, more ele-
mentary programs.

But, eventually, one must commit to a form for these programs, some
sort of concrete representation. In their most authoritative form, these
representations consist of executable specifications of the computation:
“code” written in some language that can be made to run on a com-
puter. Languages with a richer set of abstractions — higher-level lan-
guages — are a natural choice for the concrete representation, as they

admit a more direct translation from the abstract idea.

A Tale of Two Stories

But, in the end, computers still speak computer, not these other, more
human- and idea-friendly languages. The story of how a program rep-
resented in a higher-level language is transformed into a representa-
tion that a computer can not only carry out but that is well-suited to
this purpose is an amazing, rich, nuanced story. The architecture of
the computer determines whether a representation is well-suited for
execution by it or not, and so this plays a part in this story. The ab-
stractions provided by the higher-level language determine what sorts
of transformations must be performed, so these too play a part in the
story.

This story is the story of the compiler, the program that is respon-
sible for carrying out the translation from higher-level language to
machine language. It is also the central story of this thesis. We tell it
by describing the major players: the computer, the compiler, and the
languages. We discuss them, in fact, in roughly that order. It might
seem backward to talk of compilers before languages. We actually as-
sume throughout that you have at least a basic reading knowledge
of a programming language such as C or Java, though we also pro-

vide analogies to natural language (such as English) where possible
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in our discussion of compilers. Ultimately, we talk of compilers before
languages because the job of a compiler is roughly similar for all lan-
guages, but the languages themselves differ in interesting ways that
have a significant impact on the specifics of their compilers.

The birth, life, and death of programming languages also make for
fascinating reading.* New languages build on and refine older lan-
guages while introducing novel ideas of their own. We can even talk
of programming language genealogy and draw out family trees.

Two of the oldest and most prolific trees belong to the imperative
and functional families of programming languages. The abstractions
offered by these families are sometimes quite similar, but the over-
all combination of abstractions differ in significant ways. These dif-
ferences are truly fundamental: the two trees are rooted in different
notions of the fundamental process of computation.

These notions are embodied in two different formalisms, the Turing
machine and the lambda calculus. The universal Turing machine, a
Turing machine capable of carrying out the computation of any other
Turing machine, was the inspiration for the von Neumann machine
that led to today’s computers. The von Neumann machine, in turn, en-
gendered the birth of the imperative language family. Thus, the transla-
tion from a higher-level, imperative language to a von Neumann com-
puter’s very low-level language can be looked at as a translation from
one imperative language to another.

The lambda calculus, on the other hand, embodies a radically dif-
ferent notion of computation. Its heritors, the functional family, can be
thought of in good part as higher-level versions of the lambda calculus.
Translating these languages into the lambda calculus, then, is similar

to translating imperative languages into machine language.

If you are interested, you might want to start with the proceedings of the few history
of programming languages (HOPL) conferences that have taken place.

Lambda the Ultimate (http://lambda-the-ultimate.org/) has a good collection of
links to genealogical diagrams.


http://lambda-the-ultimate.org/
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But lambda calculus is not machine language, and so an impor-
tant element of compiling all functional languages is effecting this
paradigm shift: taking the representation of a computation defined
in terms of the lambda calculus and turning it into a representation

executable by a von Neumann machine.

The Neverending Story

The conclusion of this thesis is about a story that has yet to be written.
Or perhaps it would be more exact to say, that we are writing now.
For the last part of this thesis is about what is to become of our two
families. In it, we will put the families side by side. We have seen where
they have been, and some of where they are now. The final question is

one you can help answer: what are they to become?
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OVERVIEW

Before we can discuss compiling functional languages, we must set the

scene.

BEGINNINGS looks into where the imperative and functional paradigms

began.

COMPUTERS outlines the structure of modern computers with an em-
phasis on those features that particularly affect the design of

compilers.

COMPILERS introduces compilers, including their architecture and as-
sociated theory, and concludes with a discussion of bootstrap-

ping a compiler.






BEGINNINGS

2.1 A STICKY ENTSCHEIDUNGSPROBLEM

The DECISION PROBLEM was an important problem in twentieth-
century mathematical logic.* It addresses the fundamental question
of what we can and cannot know. There are many ways to pose the de-
cision problem, or ENTSCHEIDUNGSPROBLEM as it was often called.
One formulation was given by Hilbert and Ackermann in their 1928
book Principles of Theoretical Logic. They call the dual problems of de-
termining the universal validity and determining the satisfiability of
a logical expression the DECISION PROBLEM. The problem is solved
when one knows a “process” that determines either property of any
given logical expression in first-order logic. The particular first-order
logic they had in mind was that propounded in their book on the
restricted function calculus, later called the restricted predicate calcu-
lus.They were not able to be so clear about what they meant by “pro-
cess.”

By the 1930s, not only was the nebulous idea of a process formalized,
but the decision problem had been solved in a way unanticipated by
Hilbert: it was impossible to provide such a process.

The idea of a process was formalized three ways:

e the theory of RECURSIVE FUNCTIONS

* For example, it is intimately bound up with Hilbert’s tenth problem:

Given a Diophantine equation with any number of unknown quanti-
ties and with rational integral numerical coefficients: To devise a pro-
cess according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.
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e the LAMBDA CALCULUS
e the TURING MACHINE.

From lambda calculus springs the functional paradigm, while the Tur-

ing machine inspires the imperative paradigm.

2.2 CHURCH AND HIS CALCULUS

Church developed the lambda calculus in hope of providing a logical
basis for all of mathematics. While he was ultimately frustrated in
this, he succeeded in creating a rich framework for both logic and,
eventually, computer programming.

The lambda calculus formulates computation as term rewriting and
distills the concept of the function to textual substitution. The text
comes in the form of LAMBDA TERMS; the rewriting comes as RE-
DUCTION RULES. To define the set of lambda terms A, we seed it
with an infinite set of variables V = {v,v/,v"/,...} and then further
admit all expressions built using two operations, APPLICATION and

ABSTRACTION:

xeV = x€A
M,Ne A = (MN) e A (application)

MeA xeV = (AxM) € A (abstraction)

The fundamental reduction rule of the lambda calculus is that of f3-
REDUCTION: the application of an abstracted term AxM to another
term N can be replaced by M with N substituted for every occurrence

of x throughout M, or, written more symbolically, VM, N € A,

(AXxM)N = M [x := N]J.



—+

2.3 TURING AND HIS MACHINES

We will have more to say about the lambda calculus later in Chap-
ter 12, THEORY. For now, we will content ourselves with pointing
out that N in (AxM)N may be any other lambda term, including an-
other abstracted term; the only distinction between “functions” (AxM)
and “literals” v,V/, etc. is that “functions” provide opportunities for

[3-reduction.

2.3 TURING AND HIS MACHINES

Turing was working expressly to address the Entscheidungsproblem. He
formalized computation by way of an abstract machine. A “process” is
embodied in a machine. In the case of the decision problem, it would
accept logical expressions — instances of the decision problem - as in-
put.* If there were an algorithm for the decision problem, the machine
would then be able determine the answer for all instances. Instead,
Turing found that any such machine would never be able to decide
whether all possible input instances are or are not satisfiable; the deci-
sion problem is fundamentally UNDECIDABLE, which is another way
of saying it is not computable.t

Turing’s machines look very much like a high-level sketch of our
modern von Neumann machines. They consist in a finite control (the
program), a read-write head, and an infinitely long tape (the memory).
The tape is divided into cells: each cell is either marked with a symbol
or blank. The problem instance is written on the tape and the machine
started; if it comes to a halt, the state it is in indicates the yea-nay-
result of the computation. The final contents of the tape can be used to
communicate actual details of the answer: for the decision problem as

given above, the final state could be used to indicate that, yes, the in-

These expressions would, of course, have to be suitably encoded for its consumption.
This is not to say that some individual instances of the problem are not decidable,
but that there is no solution to the problem as a whole.
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put instance is satisfiable, while the tape could contain Boolean values
satisfying the equation.

Formally, we can treat a Turing machine as a six-tuple (Q, Z, B, 5, qo, F):
Q is the finite set of states the control can be in.
L is the finite alphabet available for writing the input on the tape.

B is a distinguished blank symbol that cannot be part of the input;
prior to placing the input on the tape, the tape is nothing but an

endless sequence of cells filled with B.

0 is a state transition function, 6: (XUB) x Q — (X UB) x Q x D, de-
scribing how the Turing machine reacts to reading a symbol o

in state g:

* it writes some symbol, either the blank symbol or an input

symbol;

* it moves from its current state to some state in Q, possibly

the same state; and

* its head moves some direction, either left L or right R (that

is, D ={L, R}).
do is the initial state of the machine.

F is the set of ACCEPTING STATES; F C Q, and if the machine con-
cludes its computation, that is, HALTS in some state in F, this
indicates an affirmative answer to the question posed it. The
computation is concluded when the machine can make no fur-

ther move, which occurs when 4(0, q) is undefined.*

In the Turing machines’ sequential operation and reliance on changes
in their state and data store to perform computation, we find the roots
of the imperative paradigm. Even more plain is the resemblance to our

modern-day von Neumann computers.

* This makes 4 a partial function. We can restore its totality by introducing the possibil-
ity of transitioning to a distinguished HALT action, but this is not really necessary.



COMPUTERS

3.1 FROM ABSTRACT TURING MACHINES TO CONCRETE COMPUT-

ING MACHINES

A Turing machine takes some input, acts on it, and, if its computation
terminates, produces some output. For example, we can specify a Tur-
ing machine that takes as input a natural number and checks whether
that number is even or odd, and we can guarantee that it will always
halt with an answer. To compute the solution to another problem, we
must specify another Turing machine. This is fine when we are work-
ing with paper and pencil, but Turing machine computations executed
via paper and pencil offer no advantage over any other work with
paper and pencil and have the disadvantage of being exceedingly te-
dious. What if we wanted to move beyond paper-and-pencil machines
and manufacture machines that perform these computations in the real
world, machines that will not become bored and make a mistake, and,
further, can carry out the computations much faster than we? In that
case, producing a separate machine for every computation would not
be of much use. Indeed, what we need is a universal machine, a sin-
gle machine capable of computing anything any Turing machine can
compute.

This UNIVERSAL TURING MACHINE would accept as input the de-
scription of another Turing machine and data for that machine to op-
erate upon and then simulate the operation of the input machine on

the input data. By devising an encoding for the description of a Turing

13
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machine that can be processed by a Turing machine, we can build this
abstract machine. What remains is to build the concrete machine.
What parts would such a machine need? From a user’s perspective,

any Turing machine performs three primary activities:
® accept input
¢ perform the computation for this input
* produce output.

Two of these steps involve communicating with the user; one is en-
tirely internal to the machine. When we move to a universal Turing
machine, what was once internal becomes external: the need to simu-
late the action of another Turing machine demands some way to store
the description of the Turing machine while simulating it.
Considering Turing machines has in fact brought us to the essential

parts of a modern computer:
* means of accepting input and communicating output
e storage for input, both programs and data
¢ facilities to process instructions and data.

This chapter will describe these three fundamental divisions of a com-
puter with a particular emphasis on aspects of their implementation
that affect compilation.

Before we move on, let us take one last look at Turing machines in
light of this list. The processing facilities of the universal Turing ma-
chine are its transition function and states operating per the definition
of Turing machines. Input-output facilities are not actually part of the
Turing machine: input appears on the tape, computation occurs, and
we somehow observe the final state and tape contents of the Turing
machine. The universal Turing machine’s storage is its tape. It is in-

teresting that both data and program (the description of the machine
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to be simulated) lie on the same tape. A single memory for both in-
structions and data is the hallmark of the VON NEUMANN ARCHI-
TECTURE and distinguishes it from the HARVARD ARCHITECTURE,
which uses separate memories for program and data.* While Turing
machines are a tremendously useful model for computation in the ab-
stract, and while they also serve surprisingly well to bridge the concep-
tual distance from the abstract model to the concrete machine, that is
as far as they will bring us. In the rest of this chapter, we will be talk-
ing about time-bound, space-bound, hardware computers, the clever
methods used to reduce the limitations introduced by reality, and how

those methods affect compilation.

3.2 PROCESSOR

The processor is the brain of the computer. It is responsible for read-
ing instructions, decoding and dispatching them for execution, and
directing the other functional units in their operation. It does this re-
peatedly in a rapid instruction-fetch-decode—dispatch cycle: processor
performance is often measured in terms of millions of instructions per
second (M1rs), as well as in terms of the average cycles per instruction
(cr1). The time to execute an instruction varies from a few cycles (sim-
ple arithmetic operations) to millions of cycles (loading values from
memory). The processor keeps track of which instruction to fetch next
via its PROGRAM COUNTER (PC). Every time it fetches an instruction,
it increments the PC to the address of the location of the next instruc-

tion.

To be fair, it is possible to define universal Turing machines naturally homologous to
both of these architectures; it is simply our exposition that makes the von Neumann
appear the more natural.

15
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3.2.1 The Fetch-Decode-Dispatch Cycle

The processor only understands binary digits, or BITs. The instruc-
tions themselves are simply distinguished sequences, or STRINGS, of
bits with an agreed upon meaning. The bit strings are given meaning
as part of an INSTRUCTION-SET LANGUAGE (IsL). Each instruction-
set language is used to talk with a specific INSTRUCTION-SET AR-
CHITECTURE (IsA). Each processor is an implementation of some
instruction-set architecture and understands the instruction-set lan-
guage designed for that architecture. In a sense, the instruction-set
architecture is a description of an interface between an instruction-
set language and a particular processor. It leaves the details unspec-
ified, and this is where the various processors implementing a particu-
lar instruction-set architecture differentiate and distinguish themselves.
As a loose analogy, consider a caller ID unit. It has to be able to con-
nect to the phone system, and it has to speak the same language as
the phone system to be able to receive the information it displays, but
beyond that it is free to vary its shape, size, and the number of callers
it can remember, among other things.

The processor computes according to the instructions it is given. It
executes the instructions one after another. Before it can follow an in-
struction, it first has to get it, that is, the processor must FETCH the
instruction. Next, it must read and understand it. This process of look-
ing over and understanding an instruction is called INSTRUCTION
DECODING. The first step of decoding an instruction is to recognize
what sort of instruction has been fetched. Various sorts of instructions
have various parts (called OPERANDS) relevant to what the processor
is supposed to do; for example, an instruction to read in a location
in memory will have to specify the location. After the processor un-

derstands these parts of the instruction, the processor has completed
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decoding the instruction. The instruction can then be b1ISPATCHED for
execution and the next instruction can be fetched by the processor.
What sorts of instructions are there? Instructions generally cover
arithmetic operations (add, subtract, multiply, divide) on integers and
floating point numbers,* shifts (left and right — the bitstring 001 shifted
left by 2 becomes 100), logical operations (and, or, not, exclusive or),
jumps (instructing the processor to change its PC and begin fetch-
ing instructions at another location) and conditional branches (jumps
that are predicated on a particular condition, like a register’s being
nonzero), and memory operations (load from memory into a register,
store from a register into memory, and possibly copy from register to
register or memory location to memory location). The way conditional
branches are supported and the types of conditional branch instruc-
tions provided vary from processor to processor, as do the ways that
memory locations can be specified. Many other operations may be pro-
vided, such as those meant to deal particularly with strings of alpha-
betic characters coded into bits in one way or another or instructions
meant to deal with numbers encoded as binary-coded decimal rather

than as binary numbers. Each instruction set is different.

3.2.2  Functional Units

The instructions themselves are carried out by other functional units.
Many of the arithmetic operations will eventually be routed through
an arithmetic logic unit (ALU). Those dealing with floating point num-
bers, however, are likely to be sent to either a floating point unit or
even a floating point co-processor.

Storage for operands is frequently provided by REGISTERS. Reg-

isters may be either special-purpose (available for use only in floating

Floating-point numbers are the computer equivalent of scientific notation. The
“point” of “floating point” is the decimal point, whose position relative to the sig-
nificant digits (those that we actually bothered to write down) can be changed by
varying the exponent.

17



18

COMPUTERS

point operations, for example, or devoted to storing the PC or the num-
ber zero), in which case they are likely to be divided into REGISTER
CLASSES, or general-purpose (available for any use in any instruction).
Others may be functionally general-purpose but reserved for use by
the operating system or assembler. The trend has been to greater num-
bers of general-purpose registers. Certain registers are exposed to the
programmer via theinstruction-set language and guaranteed by the
instruction-set architecture, but the implementation is likely to make
use internally of far more registers. If all the operands of an instruc-
tion must be in registers, the instruction is said to be register-register.
Some instruction sets have register-memory or even memory-memory
instructions, where one or even all operands of the instruction are in

memory. This was particularly common in the past.

3.2.3 Assembly Language

Bit-string instructions are fine for machines, but they are difficult for
humans to work with. For this reason, ASSEMBLY LANGUAGES were
developed. Assembly languages represent the instructions with alpha-
betic abbreviations such as j for jump, beq for branch if equal, or add
for add. They will often allow the use of textual labels for the spec-
ification of branch and jump targets and the use of names for regis-
ters as opposed to purely numbers. They will accept directives as to
the alignment of data in memory and convert character strings to bit
strings in a particular encoding rather than requiring the programmer
to perform the conversion. They might also provide greater levels of
abstraction, such as providing pseudoinstructions like a richer set of

branch conditionals that can be readily translated into the processor-
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provided instructions or allowing the programmer to define macros*
for common code sequences.

The ASSEMBLER is responsible for translating this symbolic instruc-
tion language into the binary instruction set language. It assembles
assembly language code into OBJECT CODE executable by the proces-
sor. Its action is that of a compiler, though its job is generally much
simpler than that of compilers for higher-level languages whose level

of abstraction is much farther from the underlying processor.

3.2.4 Types of Processors

There have been many types of processors, but the two dominant types
are the COMPLEX INSTRUCTION SET COMPUTERS (cisc) and the
REDUCED INSTRUCTION SET COMPUTERS (RISC).

CISCs were developed when computing resources were very lim-
ited and most programming was done in assembly languages. Since
the instruction set language itself was programmers’ primary interface
to the machine, it seemed worthwhile to provide higher-level instruc-
tions that accomplished more complex goals, such as copying an entire
string of characters from one place in memory to another or repeat-
ing an instruction a number of times determined by a counter register.
They also frequently used variable-length instructions, to minimize the
amount of space required by instructions — more complex instructions
would frequently require more information, and so more bits, than
simpler instructions.

The complex instruction sets of CISCs were meant make it easier
for people to program in assembly language. With the development
of higher-level languages and compilers, these features were no longer

necessary. In fact, compilers of the time were unable to take full ad-

So-called by abbreviation of “macro-instruction.” These are “big” instructions that
stand in for and eventually expand out into a longer or more complicated sequence
of instructions. The instructions might also be capable of accepting arguments to be
substituted for placeholders throughout the expanded sequence.
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vantage of these complex instructions and often generated instead
equivalent sequences of simpler instructions. More complex instruc-
tions also require more complex logic and so more space within the
processor. Supporting the complex instruction set slowed the proces-
sor and made it difficult to take advantage of more advanced proces-
sor design ideas. By reducing the complexity of the instruction set, the
amount of space needed in the processor to implement the instruction
set could be reduced, enabling the inclusion of greater numbers of fast
registers. RISCs capitalized on these observations. One of the most no-
ticeable simplifications of their instruction sets is the elimination of
memory-memory, register-memory, and memory-register operations
beyond those necessary to load data from memory to registers and
store data to memory from registers, leading to the characterization of
RISC architectures as LOAD-STORE ARCHITECTURES.

RISC ideas have been highly influential, and RISC processors are
often used in embedded situations, such as in cell phones, PDAs, wash-
ing machines, automobiles, and microwaves. However, when IBM elected
to go with Intel’s 8086 series CISC processors rather than Motorola’s
68000 series RISC processors for its personal computers, it set the
stage for the x86 and its successors to become the most common non-
embedded processors. Modern CISC processors, such as those made
by Intel and AMD, integrate elements of the RISC philosophy into
their designs while preserving compatibility with older x86 software.
The CISC instructions are often translated by the processor into RISC
microcode, which is then executed by the processor. Many of the more
“CISCy” instructions have been preserved for compatibility but allowed
to “atrophy” to where they will execute much more slowly than a
longer sequence of simpler instructions accomplishing the same result.
This blending of RISC and CISC ideas, which eliminates any clear dis-
tinction between the two approaches to processor design, has brought

us to what might be called a post-RISC era.
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3.2.5 Issues Particularly Affecting Compilation

When you compile software, you want it to run as well as possible
on your computer. Often, this means as fast as possible, and as much
work has gone into making the processors themselves run as fast as
possible, the processor provides a lot for a compiler writer to worry

about.

Registers

The number of registers available for compilation affects the useful-
ness of various optimizations as well as the speed of the compiled
code. Storing to memory is slow, while registers are fast: the more
data that can be kept in register, the better. Thus, the more general
purpose registers available to the compiler when it comes time to
allocate the generated code among the available registers, the better.
Some processors provide a means to utilize the greater number of
implementation-supplied registers; the REGISTER WINDOWS of Sun
Microsystem’s SPARC (Scalable Processor ARChitecture) machines are
one example. As mentioned above, some architectures will specify that
various registers are reserved for various purposes and unavailable to
the compiler. The architecture might also specify how registers are to
be treated during a procedure call by defining a CALLING CONVEN-
TION." All of this directly affects the code generated by a compiler

targeting the architecture.

Historical Accidents and Implementation-Specific Extensions

As mentioned above, while the instruction set language might pro-
vide a special-purpose instruction for handling, say, string copying,

this might actually execute slower than a sequence of simpler instruc-

Even if an architecture has nothing to say about register usage in procedure call,
a programming language specification might specify a calling convention in an at-
tempt to guarantee interoperability between programs written in the language.
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tions accomplishing the same thing. Thus, it is not sufficient to be fa-
miliar with the specification of the instruction set language or even of
the instruction set architecture: decisions made in the implementation
of the specific processor can affect choices made during compilation
(or at least in some cases should). Other operations retained for com-
patibility might also be best avoided.

At the same time, various implementations will extend the instruc-
tion set in ways their designers hoped would be of use to compiler
writers. Examples are the streaming SIMD extensions® added to var-
ious successors of the x86 architecture by Intel and AMD meant to

speed up code compiled for multimedia applications.

Pipelining and Speculation

In an attempt to speed up instruction execution in general, modern
processors are deeply PIPELINED. Pipelining exploits INSTRUCTION-
LEVEL PARALLELISM. Rather than decoding an instruction, dispatch-
ing it, and waiting for its execution to complete before beginning to ex-
ecute the next instruction, instructions are decoded immediately, one
after another, and dispatched, so that their execution overlaps. Pipelin-
ing does not decrease how long it takes an instruction to execute, but
it does increase the number of instructions that can be executed per
unit of time, making it appear that instructions are executing faster.
The depth of the pipeline places an upper limit on the number of
instructions whose execution can overlap. However, various hazards
of an instruction sequence can prevent an instruction from completing
every cycle, and so prevent a new instruction from being dispatched
each cycle. This causes a decrease in the number of instructions that
can be executed in a given time period, a quantity referred to as IN-

STRUCTION THROUGHPUT.

Generally further abbreviated to SSE, SSE2, etc. for the various generations of ex-
tensions. The SIMD part stands for “single instruction, multiple data.” An example
of such an instruction would be an add operation that specifies the addition of two
vectors (likely representing a point in three-dimensional space), each made up of
several data components.
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STRUCTURAL HAZARDS occur when multiple instructions require si-

multaneous use of the same functional units.

DATA HAZARDS occur when an instruction requires data that is not

yet available.

CONTROL HAZARDS occur when the program counter is to be altered,
but how it will be altered is not known sufficiently in advance

to keep the pipeline full.

All of these hazards cause sTALLS, also known as BUBBLES — space
in the pipeline where an instruction would be executing, except that it
cannot.

Various methods are employed to address these hazards. Structural
hazards can be addressed by carefully designing the instruction set
and the processor. Within the processor, data hazards are addressed
by FORWARDING. Forwarding diverts data to where it is needed as
soon as it is available, rather than waiting for it to become available
through the usual means. For example, if an instruction is waiting on
a value to be loaded from memory to a register, rather than waiting
for the value to enter the datapath and finally be committed to register
before loading it from the register, forwarding will make the value
available as soon as it enters the datapath. It will eventually be stored
to the targeted register, but in the mean time, the instruction that was
waiting on the value can continue execution.” Outside the processor,
data hazards are partially addressed by the introduction of a memory
hierarchy, which we will discuss in Section 3.3, Memory.

Control hazards are addressed by BRANCH PREDICTION. This can
be as simple as always assuming a branch will not be taken or more

complex, such as dynamically tracking whether the branch is taken

Some instruction sets expose the delay following branch (and load-store) instruc-
tions to the user in what is called a DELAYED BRANCH: the next (or next several)
instructions following a branch instruction are always executed. As pipelines deep-
ened, exposing the delay to the user became less and less feasible, and successors of
such instruction sets have often phased out such instructions in favor of non-delayed
versions.
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more often than not during execution and acting accordingly. The pro-
cessor begins executing instructions as if the branch had gone the way
it predicted; when the branch is finally decided, if it goes the way that
was predicted, there is no stall. If it goes the other way, there must still
be a stall. Further, the processor must be able to undo all the instruc-
tions executed along the path not taken.

This is a specific example of a more general technique called sPEc-
ULATIVE EXECUTION, in which a guess is made about some prop-
erty of a part of the instruction stream, execution continues as if the
guess were correct, and then is either confirmed or undone depend-
ing on whether the guess was correct or not. This is useful not only
for branches, but for reordering the instruction stream in general to

increase instruction-level parallelism.

Multiple Issue Processors

Another way to address these hazards and improve performance in
general is to move to MULTIPLE ISSUE processors. Rather than issu-
ing at most a single instruction each cycle, multiple issue processors
issue multiple instructions whenever possible. They are able to do this
because much of the datapath has been duplicated, perhaps multi-
ple times. Instructions can then truly execute simultaneously rather
than simply overlapping. Clever methods are employed to ensure the
appearance of sequential execution is not violated and to resolve de-
pendencies between instructions. However, instruction sequences that
have been optimized to maximize instruction-level parallelism will run
faster; an optimizing compiler will take advantage of this.

In fact, in STATIC MULTIPLE ISSUE processors, compilers have no
choice but to take advantage of this, as the processor itself merely per-
forms multiple issues by following instructions. The burden of schedul-
ing instructions to maximize instruction-level parallelism and taking

advantage of the architecture falls entirely on the compiler. This has
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the advantage of enabling the compiler to leverage its knowledge of
the properties of the entire program to demonstrate that reordering
and simultaneously scheduling instructions is safe, but it has the dis-
advantage of directly exposing much of the internal design of such a
processor, so that a program is more likely to have to be recompiled in
order to run on even a slightly different processor.

DYNAMIC MULTIPLE ISSUE, Or SUPERSCALAR, processors attempt
to exploit instruction-level parallelism at runtime. As they read in in-
structions, they reorder them, issue multiple instructions whenever
possible, and speculatively execute instructions when they can. Since
all of this goes on “behind the scenes,” a compiler can completely
ignore it and still produce runnable code. At the same time, a se-
quence of instructions tailored for a specific processor can maximize
the amount of instruction-level parallelism exploitable by that proces-
sor. Thus, unlike with static multiple issue processors, knowledge of
the specific implementation of an instruction-set architecture using dy-
namic multiple issue is advantageous to the compiler but is not nec-
essary to produce code that will run, and code that runs on one im-
plementation of the instruction-set architecture should run sufficiently
well on all other implementations of the same, regardless of whether
or not dynamic multiple issue is employed.

Not only do pipelining, speculation, and multiple issue greatly com-
plicate the development of a processor, they also make it more difficult
to predict how generated code will be executed, as well as placing
great emphasis on optimizing for instruction level parallelism. Exam-
ples of the effect these have on compilers are the efforts taken to min-
imize the number of branches and keep values in register as long as
possible, though this latter is even more severely motivated by the

presence of a memory hierarchy.
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3.3 MEMORY

A processor is nothing without memory. In the course of computing,
the processor needs some way to store the data it is computing with.
This necessitates some amount of temporary memory. Moreover, we
should like for this memory to be very fast, so that computations not
take an inordinate amount of time. However, we should also like to in-
troduce a more persistent form of memory. This could take the form of
something rather non-technical, such as punched cards, or something
more technically sophisticated, such as a hard drive. We should also
like this persistent storage to be as fast as possible, but we would be
willing to sacrifice speed for capacity.

It is not surprising, then, that there should arise a definite memory
hierarchy. This hierarchy is organized as a pyramid with the proces-
sor at its apex: memory closer to the processor can be accessed more
quickly but can store much less (for reasons of both cost and space),
while memory further from the processor is slower but much more ca-
pacious; by the time we reach the lowest level, SECONDARY STORAGE,
the capacity has become virtually unlimited. This severe difference —
fast and small on the one hand, slow and large on the other — is fine
so long as we can restrict our computations to use the faster memory
and leave the slower purely for storage. But this is rarely possible.

In order to reduce the need to use slow, secondary storage, we ex-
ploit the frequent fact of spatial and temporal locality in memory ac-
cesses to promote contiguous blocks of secondary storage into CACHES
— faster but less capacious memory that mirrors the contents of sec-
ondary storage. Caches are organized into levels based on how close
they are to the processor, and so how fast and small, generally from
level one (L1) to at most level three (L3). Memory accesses first attempt
to hit on the desired memory in cache; only if that fails do they have to

resort to disk. The time to realize that the attempt to hit the memory in
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the cache has failed is called the M1ss PENALTY. This penalty is only
introduced because of caching, but without caching, one would pay
the far higher price of always having to wait for the disk to respond.

One common way to reduce both the miss penalty and the time to
hit is to restrict the number of places a given block of memory can
be placed in the cache. If the data at an address can be stored in any
cache line, one must check every cache line to be sure that the data is
not there. Such a cache is called FULLY AssocCIATIVE. If the data at
an address can only go in exactly one line, one can readily determine
whether or not it is in the cache. Such a cache is called ONE-wAY SET
ASSOCIATIVE. However, because each level of the memory hierarchy
is smaller than the one below it, there are always fewer cache lines
than there are blocks of memory that could need to be stored in the
cache. Limiting each block to being stored in only one, or only two,
or any number of places fewer than the number of lines in the cache
introduces a competition for those limited number of places among
the blocks of memory that can only be stored in those places. This is
in addition to the necessary competition for being in any line at all of
the space-limited cache that occurs even in a fully associative cache.

While caches seek to exploit spatial and temporal locality, precisely
how is a matter of some delicacy, with no clear best solution. One can
attempt to reduce the miss penalty or time to hit, increase the capacity
of the cache, improve its strategy for loading in a new CACHE LINE
(the unit of storage within the cache, amounting to a fixed number of
bits) from disk and its selection of a line to evict, but one cannot do all
of these at once. Multilevel caches only further complicate things.

To help in thinking about such issues, one can characterize the types

of cache misses through the “three Cs”:

COMPULSORY MISSES occur on first access to a block of memory be-
cause a memory access has to miss before its line can be brought

into the cache. They cannot be avoided, though they can be pre-
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vented from causing a delay by PREFETCHING, which provides
a way to indicate that a given block of memory might be needed

in the future and should be loaded now.

CAPACITY MISSES occur when a previously evicted block is requested
again because a cache can only store so many lines of memory.

They can be decreased by increasing the size of the cache.

CONFLICT MISSES occur only in non-fully associative caches, when a
block that was evicted by another block competing for the same
set of cache lines is requested again. They can be decreased by

increasing the associativity of the cache.*

Of all of these, the one that has the most direct effect on compilation
is compulsory misses, provided prefetching is available. Otherwise, it
is simply the existence of a memory hierarchy and its workings that
affect a compiler. These details can make some data structures more
efficient than others, affecting how the compiler codes the runtime
behavior of the program. It also makes some uses of memory to store
data during the program more efficient than others: use of one memory
layout or another also falls to the compiler.

The existence of a memory hierarchy has a major effect on both com-
pilation and compiler design. It affects compilation by increasing the
need for and desirability of optimizations to increase spatial and tem-
poral locality of memory accesses, reduce the need for storage, and
confine space needs to registers internal to the processor as much as
possible. It affects compiler design not only because of its effects on the
code a compiler must generate, but also because the memory hierar-
chy has an effect on the behavior of the data structures and algorithms
used to implement the compiler. Most algorithms are developed, ei-
ther intentionally or naively, in a FLAT MEMORY MODEL that assumes

unlimited fast memory. As soon as one begins considering the effect

While competition occurs between all blocks for all cache lines in a fully associative
cache, the misses that occur due to that competition are classed as capacity misses.
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of the memory hierarchy on the data structures and algorithms used,
formerly optimal implementations may no longer be so.

Early attempts to develop algorithms and data structures within the
context of a memory hierarchy used the DISK-ACCESS MODEL, which
parameterizes its algorithms based on properties of the memory hi-
erarchy such as the block size of and number of blocks in the cache
(also called the width and height of the cache). These parameters are
often not available and difficult, if not impossible, to determine at run-
time. Introducing this explicit parameterization also makes code less
portable and maintainable. Further, the model presumes fine-grained
control over the behavior of the cache and storage that frequently is
not available.

The later CACHE-0BLIVIOUS MODEL addresses these problems: while
proofs of the behavior of its algorithms and data structures are by ne-
cessity parameterized, its data structures and algorithms are not, and
behave well so long as at least a two-level memory hierarchy exists that
can be modeled in the fast-slow small-large fashion appropriate to the
two levels of cache and storage. Such a relationship exists generally
between all levels of a memory hierarchy, so this suffices to guarantee
the desired performance. This guarantee can and has been made pre-
cise in a formal fashion; for details, consult the Bibliographic Notes for

this chapter.

3.4 INPUT-OUTPUT

Input-output is the computer’s interface with the outside world. It en-
compasses everything from keyboards and monitors to network con-
nections, disk access, and, in some sense, communication and synchro-
nization between multiple PROCESSES (that is, currently running pro-
grams with their own memory context and position in their instruc-

tions) and between multiple THREADS of execution. (Threads make
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up a process: each process has at least one thread of execution, but
it might also divide its work between multiple threads.) Input-output
requires implementation support. Input-output is primarily supported
in one of two ways, through busy-wait (“spin blocking”) protocols and
through the use of interrupts.

In a BUsy-wAIT input-output protocol, the computer provides a
means for a program to indicate it wishes to perform output or re-
ceive input from a device. A signal is used to indicate the status of the
input-output “channel”: once it is ready to accept output or provide in-
put, the signal is set to indicate this. On performing the desired action,
the signal is reset. This requires constant polling of the signal to see
whether its status has changed. The process performing this polling is
unable to proceed while it cycles between checking whether the status
has changed and waiting between checks. A process behaving in such
a way is said to be SPIN BLOCKING. Signals are also often provided by
the processor for use in synchronizing the actions of processes using
shared-memory concurrency. Atomic operations such as test-and-set
might also be provided to help support concurrent execution.

Input-output can also be synchronized via INTERRUPTS. Interrupts
are a sort of “unexceptional exception” in that they frequently make
use of the processor’s facilities for handling ExcEPTIONS (such as di-
vision by zero and numeric over- and underflow) but are only excep-
tional in the sense that they require an immediate, real-time response
and a switch in context from the currently running process to a special
exception-handler that will perform the input-output. (Interrupts are
also often used by operating systems to provide access to the system
routines they provide.) How interrupts and exceptions are supported
and the types of interrupts and exceptions supported vary from pro-
cessor to processor, but such facilities are common in most, if not all,
modern processors because of the advantage of such an implementa-

tion over busy-wait. While use of interrupts is preferable to busy-wait,
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it is not always possible. For example, communication over a network
as occurs in using the Internet is frequently handled via busy-wait
since most of the protocol stack is implemented in software.
Input-output is highly implementation-dependent and is a frequent
source of complexity and difficulty both in the design of program-
ming languages (particularly functional languages, for reasons to be
discussed later) and processors. It is also slow and time-consuming.
Due to the complexity of input-output, however, many of the issues
are often exposed to and expected to be managed at the program-
level rather than the language-level, so input-output is not a frequent
target of optimizations in the back-end, nor would it be likely to be
a very fruitful target. Handling concurrency and parallelism, on the
other hand, may be the responsibility of the compiler, particularly in
parallel programming languages. This is frequently true of the quasi-
concurrency of EXCEPTIONS included in many newer languages. Ex-
ceptions are programmatic realizations of exceptional conditions that
can arise at runtime, such as division by zero or the inability to access
a given file. Whereas programs would generally give up and abort ex-
ecution on encountering such a problem in the past, exceptions make
it possible to recover from exceptional conditions and continue exe-
cution. They also mean that execution might suddenly need to jump
to an exception handler at unpredictable times. Where permitted by
the language, choices made by the compiler in how to support concur-

rency and parallelism can affect program runtime and safety.

3.5 BIBLIOGRAPHIC NOTES

The universal Turing machine was introduced by Alan Turing in his
seminal paper Turing [127]. If the idea particularly intrigues you, you
might enjoy Herken [52], a collection of short papers related to and

inspired by Turing’s own.
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Patterson and Hennessy [98] is a good introduction to the design
and architecture of modern computers, including an influential RISC
assembly language and familial variations thereof. Another work by
the same authors, Hennessy and Patterson [51], goes into far more de-
tail. Information on specific instruction-set architectures and languages
is generally freely available online from the manufacturer.

For an introduction to the cache-oblivious memory hierarchy model,
you could do no better than to start with Demaine [39]. This paper
briefly surveys the history of memory hierarchy models, formally in-
troduces the cache-oblivious model, and explores some of its essential
data structures with proofs of their space behavior. It provides pointers

to the relevant literature throughout.
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A COMPILER is a translator. As in translation, there is a source lan-
guage and a target language, and it is the translator’s job to analyze
the source text and produce “equivalent” text in the target language.
When translating human languages, the equivalency of the original
and a translation is only rough because there are so many factors on
which to evaluate equivalency. When it comes to programming lan-
guages, however, we are not interested in the niceties of meter or allit-
eration, nor do we care about any subtleties of connotation: we want
to map a computation expressed in one language to a computation
expressed in another such that both produce identical outputs when
given identical inputs.

Beyond that requirement, everything else about the computation is
fair game for alteration. Since the source language is often unaware of
the peculiarities of the target language, many of the details of how ex-
actly the computation should be carried out are unspecified and open
to interpretation: 5 x 4 can be calculated by straightforward multipli-
cation of 5 and 4, but if 5 x 2 is already known, we need only multiply
that quantity by 2, and since these multiplications happen to be powers
of 2, we could instead employ bit shifts in place of multiplication, espe-
cially as a bit shift is likely to take less time than multiplication. Even
if the source language is also the target language, the original source
code might still be improved by careful translation without altering its
behavior in the high-level sense of input-output mapping discussed
above.

Alterations that will preserve observable behavior are called sAFE:

correspondingly, alterations that might not are called UNSAFE. A com-
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piler will never voluntarily perform unsafe alterations, though some
allow the human user to instruct them to do so, as might at times
seem desirable for runtime checks that serve only to catch errors that
slipped past the programmer or when the human is able to determine
that a transformation that appears to the compiler to be unsafe will, in
fact, be safe in this case. The compiler must act conservatively: it can
only consider safe those transformations that it can prove to be safe,
and it must assume the worst where it cannot prove the behavior to be
any better. The user need not make such assumptions.

You might be wondering whether, if compilers are translators, is
there a similar programming language analogue for human language
interpreters? There is, and they are even called INTERPRETERS. They
perform on-the-fly interpretation: rather than translating the code for
future execution, they directly execute it. They are not able to perform
the extensive analysis of the whole program that compilers perform.
It is, in fact, this degree of analysis that particularly distinguishes a
compiler, though translation for the future rather than for the present
is also frequently a characteristic. This latter characteristic, however,
is less apparent in more recent developments such as JUST-IN-TIME
COMPILATION, which might be coupled with an interpreter as in the
Java Hotspot virtual machine. Our subject is neither interpreters nor
just-in-time compilation, however, so this concludes our first and last
words on the two subjects.

A compiler is a translator: it analyzes the source code and produces
equivalent target code. This suggests a decomposition of the compiler
into two parts, one performing analysis and the other generating tar-
get code. The analysis part is commonly called the FRONT END, while
the code generation part is called the BAck END. From our discus-
sion of alterations and the relative speeds of multiplication versus bit
shifts, you might also infer that the compiler also attempts, following

its analysis, to improve the code in some fashion. This OPTIMIZATION
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is at times folded into the front and back ends, but as the number of
optimizations employed rises and the complexity of performing them
alongside the work of the front and back ends increases, it becomes
wise to dedicate part of the compiler to optimization alone. Optimiza-
tion can only be performed following analysis: we cannot improve
what we do not understand. At the same time, we should like to gen-
erate optimized code as directly as possible. This suggests placing the
optimizer between the front and back ends. Due to this common de-
composition of concerns and arrangement of the flow of control be-
tween the parts, the part concerned with discovering and performing
optimizations is sometimes wryly referred to as the MIDDLE END of

the compiler.

4.1 FRONT END: ANALYZING SOURCE CODE

The front end of the compiler is responsible for analyzing the source
code. It takes a long string of characters (the program), discerns what
each string is meant to be in terms of the “types of speech” of the
programming language, figures out how the various parts fit together
to form a valid program (or that they do not form a valid program,
if the programmer has made an error!), and tries to infer the mean-
ing of the parts. The first two steps are similar to the spell-checking
and grammar-checking performed by a wordprocessor. The last step is
one wordprocessors have not quite achieved just yet. An analogy along
the same lines as the others, however, would be “sense-checking” or
“sanity-checking,” which would answer the question, “This is a syn-
tactically valid sentence, yes, but does it mean anything, or is it non-
sense?” As a whole, the front end of a compiler represents one of the
great achievements of computer science: we have powerful formalisms

that can be used to specify and automatically generate it.

35



36

COMPILERS

4.1.1  Lexical Analysis

As presented to the compiler, the source code is a very long sequence
of characters. This is the domain of LEXICAL ANALYSIS. A long se-
quence of characters does not mean much at the character-level, so the
first thing the front end must do is proceed from characters to a more
meaningful level of abstraction. The LEXER, which performs lexical
analysis (and is also called, quite naturally, the LEXICAL ANALYZER),
reads in characters and chunks them into TOKENS, strings of charac-
ters having some meaning at the level of the programming language’s
structure. These tokens are akin to parts of speech in spoken language
— while the specific details of the token (“this identifier is formed by
the string engineIsRunning”) might be recorded for use in later stages,
they are subsumed by the token, which treats, in a sense, all nouns as
nouns, regardless of whether one is “cat” and one is “dog.”

This tokenization is performed systematically by simulating the op-
eration of a FINITE AUTOMATON that recognizes tokens. A finite au-
tomaton is, like a Turing machine, an abstract machine, but it is far
simpler and far less powerful: a Turing machine can do everything a
finite automaton can, but a finite automaton cannot do everything a

Turing machine can.

Regular Languages

It turns out that we can describe all decision problems as LANGUAGE
PROBLEMS. A language is a (potentially countably infinite) set of WORDs,
and words are made up of characters from a finite ALPHABET by cON-
CATENATION, the “chaining together” of characters denoted by writ-
ing them without intervening space: concatenating a and b in that
order gives ab. The decision problem recast as a language problem be-
comes, “Given a word and a language (and, implicitly, an alphabet), de-

termine whether the word is or is not in the language.” The languages
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for which a Turing machine can solve this problem are known var-
iously as RECURSIVE, DECIDABLE, and TURING-COMPUTABLE lan-
guages. The languages whose membership problems can be solved by
a finite automaton, on the other hand, are known as the REGULAR

LANGUAGES and form a proper subset of the recursive languages.

Finite Automata

A finite automaton is a constructive way to describe a regular lan-
guage. Each finite automaton is associated directly to a language, the
language whose membership problem it solves. Given a word, it solves
this problem by examining the word one character at a time. After it
has consumed all its input, it halts operation. Based on the state in
which it halts, we say either that it AccepTs the word or rejects it. We
build a finite automaton by specifying its makeup. A finite automaton
is made up of a finite set of states and a transition function that de-
scribes how, in each state, the finite automaton responds to consuming
the characters of the alphabet. In specifying a finite automaton, we also
specify the alphabet of its language, the finite automaton’s initial state,
and the set of FINAL or ACCEPTING STATES, those states which, when
the finite automaton halts in them, indicate acceptance of the word.

We can specify the states and transition function in two ways: either
in a table, as in Fig. 1, or graphically through a TRANSITION DIA-
GRAM. A transition diagram has circular nodes for states, typically
labeled with the state name, and arrows between states, which indi-
cate the transition function. The arrows are labeled with the character
causing the state transition indicated by the arrow. Accepting states
are indicated by circling the node representing their states, so that
they appear as two concentric circles. Fig. 2 provides three examples
of transition diagrams.

The form of the transition function distinguishes between several va-

rieties of finite automata. A transition function that, on any character,
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Figure 1: Specifying FA states and functions: Tables
These tables present the same information as the transition dia-
grams of Fig. 2. They represent three finite automata recognizing
the language (a | b)*b. We have adopted the convention that all
finite automata begin in state o, asterisks indicate final states, and
empty entries represent undefined transitions.

(a) Deterministic (b) Non-Deterministic
INPUT INPUT
STATE a b STATE a b
(6] (0] 1 (0] (0] 0,1
*1 o 1 *1

(c) e-Non-Deterministic

INPUT

STATE € a b

0 1
1 2,3

2 4

3 5
4 6

5 6

6 1,7

7 8

*8
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Figure 2: Specifying FA states and functions: Figures
These transition diagrams present the same information as the ta-
bles of Fig. 1. They represent three finite automata recognizing the
language (a | b)*b.

(a) Deterministic (b) Non-Deterministic
b a,b
a
start b [\ start m b
—0 00
R~

a

(c) e-Non-Deterministic

G \ Q

€

b

permits a transition to only one state is known as a DETERMINIS-
TIC FINITE AUTOMATON (DFA). A transition function that permits
a transition to a set of states on any character is known as a NON-
DETERMINISTIC FINITE AUTOMATON (NFA). It accepts if any state
out of the set of states it halts in is an accepting state. A final vari-
ety of finite automaton is distinguished by admitting not only tran-
sitions to a set of states, but “autonomous” transitions — transitions
that occur without consuming any of the input. These are known
as ETRANSITIONS because transitioning along them “consumes” only
the empty word € made up of no characters. This variety of finite au-
tomaton is known accordingly as an ée~-NON-DETERMINISTIC FINITE
AUTOMATON (eNFA). These varieties of finite automata are all equiv-
alent in power — it is possible to convert a finite automaton of one type
into another type such that both recognize the same language — but
some sorts describe a language more naturally or concisely than oth-
ers. Finite automata are unique in that, for a given regular language,

there is a MINIMAL DETERMINISTIC FINITE AUTOMATON, a deter-
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ministic finite automaton with the fewest number of states possible
that is unique up to renaming of states.

Figs. 1 and 2 describe the same three finite automata in two ways,
both in a table and through a transition diagram. All three finite au-
tomata recognize the same language. We can describe this language
through finite automata as done here or through the regular expres-
sion (a | b)*b, which will be discussed in the next section. From the
transition diagrams, what do you think this regular expression means?

The e-non-deterministic finite automaton is the most visually com-
plex. It was constructed algorithmically from the regular expression
given above by patching together simpler finite automata by way of e
transitions. The many e transitions make it highly non-deterministic.
The simple non-deterministic finite automaton was created by identi-
fying states joined solely by e transitions. It is the most elegant of the
three. Its sole non-determinism consists in state 0 having transitions to
two different states on the character b, both to itself and to the final
state 1. The deterministic finite automaton was constructed from the
non-deterministic. Its state 1 behaves like the non-deterministic finite
automaton when it is in the set of states {0, 1}, which it enters after

encountering the character b.

Regular Expressions

We can also describe regular languages declaratively, using REGULAR
EXPRESSIONS. These do not describe how to recognize a given lan-
guage, but rather describe the language directly. This is done by aug-
menting the alphabet with a direct linguistic interpretation and by
adding special symbols representing operations on this linguistic in-
terpretation.

The linguistic interpretation associated to a character is direct and
intuitive: the character a represents the language consisting of that

single character, {a}. It is natural to generalize this direct representa-
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tion to words: the word w represents the language consisting of that
single word, {w}. Words are built up by concatenation. To aid in de-
scribing many concatenations of a simple structure, we can introduce
some notation. Iterated concatenation of a regular expression w with
itself is represented by superscripts: w° is the language of only e, the
empty word; wlis just {w} itself; and, as a rule, w™ = wnTw. We can
represent unlimited concatenation using the KLEENE STAR *: W* rep-
resents the set of all concatenations of the language represented by w

1, w?,...}.If we wish to exclude

with itself, including wP: w* = {w°,w
the possibility of w®, we can use the otherwise equivalent POSITIVE
CLOSURE operator T: w = {w!,w?,...}. To represent choice or AL-
TERNATION in the language — either regular expression w or regular
expression v is acceptable — we can introduce a corresponding opera-
tor; + and | are both popular choices for representing it: we shall use |
here. Thus, the regular expression a | b represents the language {a, b},
while, more generally, the regular expression w | v constructed by the
alternation of the regular expressions w and v represents the language
L(w) UL(v), where we use L(w) to represent the language associated
to the regular expression w.* Finally, to allow unambiguous compo-
sition of regular expressions, we can introduce clarifying parentheses.
These let us describe, for example, the language (a | b)*b, the language
comprising all strings of zero or more as or bs followed by a b.

While regular expressions are very useful for describing regular lan-
guages, they do not provide a way to recognize the languages they
describe. Fortunately, regular expressions happen to be readily inter-

convertible with finite automata.

In general, where X is any description of a language, whether by Turing machine
or finite automaton or regular expression or by any other description aside from the
sets representing the languages themselves directly, we write L(X) for the language
described by X.
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Lexers

With regular expressions to describe the lexical structure of tokens and
finite automata to perform the actual work of recognizing tokens, we
have a ready way to perform tokenization. Simply scan through the
character stream till every recognizing finite automaton will begin to
fail; of those that make it this far and will accept, select the token of
the highest priority as that summing up the scanned text. This intro-
duction of prioritization provides an intuitive way to resolve ambigu-
ity deriving from our wishing to chunk an input, the program, that
in truth belongs to a language unrecognizable by a finite automaton,
into words belonging to various token-languages recognized by finite
automata.

For example, consider developing a lexer for the input

if ifPredicate;
then

echo "True.";
else

echo "False.";

fi

J

intended to report whether the provided predicate is true or false.*
The desired tokenization is illustrated in Fig. 3 on page 43 along with
a sequence of lexing rules that leads to this tokenization.

Before you can understand the rules, you must first understand
some common extensions to the regular expression notation introduced

so far:

A. A set of characters enclosed in square brackets is equivalent to

the alternation of those characters, so [abc] = (a | b | ¢).

B. Within square brackets, an inclusive range of characters is indi-

cated by interposing a dash between the two endpoints. A regu-

+ The syntax of the example is basically that of the Bash shell, except we have elimi-
nated the prefix sigils that make it easy to recognize variables.
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Figure 3: Tokenizing
(a) Desired Tokenization
Each token is enclosed by a pair of angle brackets. The
subscript text following each closing bracket indicates
the preceding token’s type. 4 and _, have been used
to represent the whitespace characters newline and
space.

(if)kw{_)ws (ifPredicate)1n(;)seq(<)us
(then)kw(<

e us (echo)iw (" True.")str (5 ) sea (d)us
(else)kw (<

coeus (echo)iw("False.") st (; ) seq (<)ws
(fi)kw

(b) Lexical Rules
Each rule specifies how to lexically distinguish
one type of token in terms of a corresponding
regular expression. When more than one rule
matches the input, the earliest is used.

TOKEN TYPE REGULAR EXPRESSION

S LdT

Kw if | then | else| fi | echo
D [A-Za-z] T

STR e

SEQ ;

lar expression matching any capital letter A through Z, then, is

[A — Z], which is equivalent to (A B |--- | Z).

c. When a caret immediately follows the opening square bracket,
this inverts the sense of the bracket-alternation: the listed char-
acters are excluded from matching, but any other character of
the alphabet will match the expression. Thus, [*"] matches any

single character of the alphabet other than ".

The rules’ order is important: earlier rules are assigned a higher
priority than later. For example, since the rule recognizing a keyword,
Kw, precedes the rule recognizing an identifier token, IDENTIFIER, if is
tokenized as a keyword rather than an identifier, even though both

rules match the two alphabetic characters i followed by f.
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In truth, the lexer is responsible for more than simply recognizing to-
kens. It works in cooperation with the parser (which we shall describe
next) by feeding it a stream of tokens. Further, it records information
associated with the tokens, often in a global, shared sYMBOL TABLE
associating to each token, or symbol, some information, such as the
text or value of the token and the file and line number where it was
first encountered. It might even use information in the symbol table or
information provided by the parser to make a distinction between to-
kens that it is impossible or exceedingly difficult to make with regular
expressions alone.

For example, if the language of the text being scanned in Fig. 3 (page 43)
required that all functions and variables be declared before use, the
lexer would be able to eschew the ID token in favor of distinct FUNCID
and VARID tokens by using information about the class of the identifier
already stored in the symbol table to distinguish between the two.

Fig. 4 on page 45 is an example of the earlier scanning rules of
Fig. 3 (page 43) adapted to use this approach. We have introduced
two new keywords, var and func, and completely changed the identi-
fier rule. Indeed, our lexing method has become more sophisticated:
there is no longer is simple one-to-one correspondence between reg-
ular expressions and tokens. Instead, matching the input to a regular
expression binds the matched text to a variable, match, and executes
an associated action. This action can affect the environment in which
lexing occurs and use that environment to decide how to classify the
matched text. This occurs here through the variable context, which is
used to determine whether we are declaring a new variable or function
identifier, or whether we should be able to lookup which of the two

the current match is in the symbol table.*

We have assumed that the parser, discussed next, has taken care of updating the
symbol table so that the lookup will succeed if the variable or function identifier was
previously declared.
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Figure 4: Using the symbol table to tokenize
(a) Desired Tokenization
A new line declaring ifPredicate to be a variable
precedes the input text of Fig. 3. The tokenization
changes accordingly.

<va r)KW<__,>w5<ifPredicate>VARID<; >SEO
<if>|(w<‘_,>ws <ifPredicate>VARID<; >SE0<<J>WS

(then)kw(<d

s {echo)ian("True.")sTr(; ) sea (d)us
(else)kw (<

s {echo)iw("False.")str (5 ) seq (< )us
(Fi)kw

(b) Lexical Rules
When a rule’s regular expression has the highest priority of all those
matching the input, the input matched is stored in match and the asso-
ciated action is taken. Each action ends by returning the token type of
the matched input.

REGULAR EXPRESSION ACTION

LT return Ws;

if | then | else | fi|echo return KW;

var context=VARDECL, return KWw;
func context=FUNCDECL, return KW;
[A-Za-z]T if (context == VARDECL)

context=PLAIN, return VARID;
else if (context == FUNCDECL)
context=PLAIN, return FUNCID;
else return lookup(match);
e return STR;
; return SEQ;
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4.1.2  Syntax Analysis

SYNTAX ANALYSIS follows lexical analysis. If lexical analysis is con-
cerned with categorizing words by part of speech, then syntax anal-
ysis is concerned with understanding how these parts of speech are
grammatically related and whether the sentences so formed are gram-

matical or not.

Context-Free Languages

In fact, “grammatical” is precisely the word, for the formalism afford-
ing ready syntax analysis is that of context-free grammars. As with
the regular languages, we are able to describe a given context-free lan-
guage either constructively or declaratively. The context-free languages
are a proper superset of the regular languages and a proper subset of
the recursive languages. Roughly, the context-free languages are distin-
guished from the regular languages by their ability to describe “match-
ing bracket” constructs, such as the proper nesting of parentheses in an
arithmetic expression, while the recursive languages are distinguished
from the context-free languages in part by their ability to cope with

context.

Context-Free Grammars

We use CONTEXT-FREE GRAMMARS to specify context-free languages
declaratively. As with regular expressions and finite automata, context-
free grammars operate in the context of a specific alphabet. The let-
ters of the alphabet are called TERMINALS or TERMINAL SYMBOLS.
Context-free grammars augment this alphabet with a finite set of NON-
TERMINALS (NON-TERMINAL SYMBOLS) to be used in specifying
grammatical PRODUCTIONS, which function as REWRITE RULES. To-
gether, the set of terminal and non-terminal symbols are called GRAM-

MAR SYMBOLS, as they specify all the symbols used by the grammar.
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Analogous to the start state of the finite automaton is the context-free
grammar’s distinguished sTART symBoOL. All words in the language
described by the context-free grammar are derived from the start sym-
bol via the productions in a manner to be described shortly.

Putting these rules together, one arrives at a grammar specification

like the following;:

G=(N,TZXP,S) N ={A,B} T ={a,b} X=ab

P={S—A, S—B, S—aABb, A—ale, B—b|e}

where N is the set of non-terminals, T the set of terminals, X the alpha-
bet, and P the set of productions, where — is read as “produces.” The
symbol to the left of the arrow is called the HEAD of the production,
while those to the right are called the BopY. For example, in the pro-
duction S — aABbD, S is the head of the production and aABb is the
body:

S — aABb
=
head  body

Derivation proceeds by substitution of production bodies for produc-

tion heads: for example,

§ 2Z9ABR [ ABb 224 aBb 2= qabb (4.1)

where = is read as “derives in one step” and the rule justifying the
derivation is written above the arrow. Taking a cue from regular ex-
. . * “ . . ”
pressions, we can also write =for “derives in zero or more steps” (all
grammar symbols derive themselves in zero steps) and = for “derives
in one or more steps,” where the productions justifying the derivation
are implicit in the superscript star; the keen reader should perhaps like

to construct their own explicit, step-by-step derivation. The language
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defined by the grammar is defined to be those strings made up only

of terminal symbols that can be derived from the start symbol.

PARSE TREES We can use a PARSE TREE to represent the deriva-
tion of a word in the language without concern for unnecessary se-
quencing of derivations imposed by our sequential presentation. For
example, our choice to derive a from A prior to deriving b from B
above is irrelevant, but that we first derived aABb from S before per-
forming either of the remaining derivations is not, since the heads of
these derivations are introduced by the derivation from S. We define

parse trees constructively:

A. Begin by making the start symbol the root.

B. Select a non-terminal on the leaves of the tree with which to con-

tinue the derivation and a production for which it is the head.

c. Create new child nodes of the chosen head symbol, one for each

symbol in the body.
D. Repeat from B.

At any point in time, the string of symbols derived thus far — those
on the leaves, read in the same order applied to the child nodes in the
body of a production — is called a SENTENTIAL FORM. The process
terminates when a word in the language is derived, as no non-terminal
leaf nodes remain. Fig. 5 on page 49 gives the parse trees created in

deriving aabb from our example grammar.

AMBIGUITY  Parse trees represent the derivation of a word with-
out regard to unnecessary sequencing. A given tree represents a given
parse. If more than one parse tree can derive the same word in the
language, the grammar is said to be AMBIGUOUS. This corresponds
to the use of a significantly different ordering of productions and po-

tentially even of a different set of productions. The grammar is called
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Figure 5: Growing a parse tree
These figures represent the construction of a parse tree correspond-
ing to the leftmost derivation of aabb given in (4.1). The non-
terminal chosen in step B is underlined, and we have labeled the
arrows between trees with the chosen production.

S
S-sanBy KSN
- —="-a A B b
7N | | 7S
a A B b|- == =|a A B b
| l l
a a b

ambiguous because, given such a word, it is uncertain which produc-
tions were used to derive it. The grammar we gave above is ambigu-
ous when it comes to the empty word €, because S = A = € and
S = B = € are both valid derivations with corresponding significantly
different valid parse trees of e. However, if we were to eliminate the
productions S = A and S = B from the grammar, we would then
have an unambiguous grammar for the context-free language com-
prising {ab, aab, abb, aabb} = {aibj [1<1,j< 2}. The only sequen-
tial choices are insignificant: in deriving aabb, we must have derived
aABDb from S, but following that, did we first derive the second a or

the second b?

DERIVATION ORDER While the parse trees for a word in a lan-
guage factor out differences between possible derivations of the word
other than those reflecting ambiguity in the grammar, when perform-
ing a derivation or constructing such a parse tree, we must employ
such “insignificant” sequencing. There are two primary systematic

ways to do so: always select the leftmost nonterminal symbol in step
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B of the parse tree construction process, or always select the rightmost.
These ways of deterministically choosing the next symbol to replace in
the derivation give rise to what are unsurprisingly known as a LEFT-
MOST DERIVATION and a RIGHTMOST DERIVATION; to indicate the
use of one or the other, the derivation arrow in all its forms is aug-
mented with a subscript of lm for leftmost derivation and rm for
rightmost, giving - and = Since this is only a matter of choice
in constructing the parse tree, it should be clear that, for any given
parse tree, there exist both leftmost and rightmost derivations of its

sentential form.

Pushdown Automata

We can also specify context-free languages constructively using an ab-
stract machine called a PUSHDOWN AUTOMATON. A pushdown au-
tomaton is a finite automaton augmented with a stack and associated
stack alphabet. It has an initial stack symbol as well as an initial state.
Its transition function and behavior is complicated by its being inher-
ently non-deterministic. As might be expected, its transition function is
parameterized by the current input symbol, current state, and the sym-
bol currently on top of the stack. However, for each such triple, the
transition function specifies a set of pairs. Each pair consists of a state
and a sequence of stack symbols with which to replace the current top
of stack. For a given triple, the pushdown automaton simultaneously
transitions to all the states indicated by the transition function and re-
places the symbol on top of the stack with the corresponding symbols
for each new state it is in. Each one of these can be treated as a new
pushdown automaton. To “move,” each member of the family of push-
down automata consults the current input, its state, and the top of the

stack, and then transitions accordingly. We again have a choice of rep-



4.1 FRONT END: ANALYZING SOURCE CODE

resenting this either with a table or graphically. While finite automaton

transition diagrams had arrows labelled

(input symbol)

the arrows of pushdown automaton transition diagrams are labelled

(input symbol), (stack symbol to pop) /(stack symbols to push)

where the convention used for the stack operations is that the symbol
that is to be on top of the stack after pushing is leftmost (that is, the
stack conceptually grows to the left).

There are some casualties of the transition from finite automata to
the increased descriptive power of pushdown automata. pushdown au-
tomata are inherently non-deterministic: they always admit e-transitions
and can be in a set of states at any given time. This non-determinism is
essential for them to define the context-free languages. The languages
described by deterministic pushdown automata, while still a proper su-
perset of the regular languages, are only a proper subset of the context-
free languages. Further, there is no algorithmic way to produce a mini-
mal pushdown automaton for a given language. This poses a particular
problem for parsing: as with lexing, we would like to use grammars
to describe the syntactic structure and pushdown automata to perform
parsing by recognizing that structure, but we must now find some way
for our inherently deterministic computers to cope with this inherent

non-determinism in a reasonable amount of time.

Parsers

As exaggeratedly hinted at above, while grammars define a language,
parsers are faced with an input that they must characterize as either of
that language or not. They must, in fact, do more than simply check

that their input is grammatical: they must construct an intermediate
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representation of their input to pass on to the next part of the com-
piler.*

We also mentioned the problem of the non-determinism inherent to
context-free grammars and pushdown automata. So long as we only
face insignificant questions of sequencing, we will have no problem
determining what to do next. Realistic inputs do not require truly non-
deterministic parsing. A program is meant to have a single meaning:
to correspond to a parse tree, not a parse forest. Non-determinism
occurs in parsing a programming language when the available context
is insufficient to predict the shape of the parse tree, and it becomes
necessary to entertain several possibilities simultaneously. Eventually,
more context will be available to resolve the ambiguity, and we can
return to building a single parse tree and abandon the others as false
starts. Problems such as these are likely to affect only part of the input,
and methods have been developed that handle such “temporary non-
determinism” gracefully.

The remainder of our discussion of parsers will focus on several
of the more common of their many types. The level of our discus-
sion will be one of summary, not of definition; for details, the inter-
ested reader is referred to the literature discussed in Section 4.6, Bibli-

ographic Notes.

RECURSIVE DESCENT PARSERS Recursive descent parsers discover
a leftmost derivation of the input string during a left-to-right scan of the
input, whose alphabet, thanks to the lexer, will be tokens rather than
individual letters and symbols. One function is responsible for han-
dling each token; parsing begins by calling the function associated to
the start symbol. They discover the derivation by recursively calling
themselves as necessary. The parser is aware of the current input sym-

bol via what is known as LOOKAHEAD. Since we are dealing with an

If, indeed, there is a next pass: it is possible to construct one-pass compilers that
translate from source to target in a single pass over the source code.
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actual machine, however, we are not restricted to lookahead of a sin-
gle symbol, though we might prefer to do with only a single symbol’s
lookahead for effiency” sake. Those grammars parsable by a recursive
descent parser with k tokens of lookahead are known as LL(X): left-
most derivation by left-to-right scan employing k tokens of lookahead.

When recursive descent parsers use one token of lookahead, they act
much like a pushdown automaton. The implicitly managed function
call stack acts as the pushdown automaton’s stack. However, since they
trace out a leftmost derivation with only a limited number of tokens
of lookahead, they must anticipate the proper derivation with minimal
information about the rest of the input stream. This makes recursive
descent parsers one of the most limited forms of parsers, though they
might be the parser of choice in some cases because of the naturalness
of expression they can admit and the simplicity and compactness of
their parsers. Many of the disadvantages of recursive descent parsers
can be overcome by admitting variable tokens of lookahead, with more

tokens being used as needed to disambiguate the choice of production.

PRECEDENCE PARSING  Recursive descent parsers are sometimes
coupled with precedence parsers in order to facilitate parsing of arith-
metic expressions. The order in which operations should be carried
out is determined by a frequently implicit grouping determined by op-
erator associativity and precedence. For example, multiplication is nor-
mally taken to have higher precedence than addition, so that 3 x 5+ 4
is understood to mean (3 x5)+4 = 19 and not 3 x (5+4) = 27. The left
associativity of multiplication determines that 2 x 2 x 2 should be un-
derstood as (2 x 2) x 2. This becomes important, for example, in cases
where the operands have side effects: suppose id is a unary function
printing its input and then returning its input unchanged. Assume
further that arguments to operators are evaluated left-to-right. Then

id(1) + id(2) + id(3) will print 123 if addition is understood to be left-
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associative, but it will print 231 if addition is understood to be right-
associative, even though the result of the additions will be identical
due to the associativity property of addition.*

Operator precedence parsing is preferred over the use of LL(k) gram-
mar rules not only because it is somewhat unobvious how to enforce
the desired associativity and precedence in an LL(k) grammar, but
also because doing so introduces a chain of productions that exist
solely to enforce the desired associativity and precendence relations
between the expression operators. Beyond its use in concert with recur-
sive descent parsers, precedence parsing has mostly been subsumed
by the class of grammars we shall describe next. The central idea
of using precedence and associativity to disambiguate an otherwise
ambiguous choice of productions has lived on in implementations of
parser generators for this later class. Without recourse to a way other
than grammatical productions to indicate precedence and associativity,
grammars would often have to take a form that unnecessarily obscures
their meaning simply to grammatically encode the desired precedence

and associativity relations.

LR(k) PARSERS The Lr (k) — left-to-right scan, rightmost derivation
with k tokens of lookahead — family of parsers is perhaps the most com-
monly used in practice. I say “family” because a number of subtypes
(to be discussed shortly) were developed to work around the expo-
nential space and time requirements of the original LR(k) algorithm.
The class of grammars recognizable by an LR(k) parser is known as
the LR(k) grammars, and it is possible to give a reasonably straight-
forward LR(k) grammar for most programming languages. However,
it was some time before clever algorithms that avoided unnecessary
requirements of exponential space and time were developed, and so

other, more restrictive classes of grammars with less demanding parsers

If argument evaluation proceeded right-to-left, 213 and 321 would be printed in-
stead.
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were developed and deployed. Parser generators targeting these classes
are more limited in terms of the grammars they can generate parsers
for, not in terms of the languages such grammars can recognize: all
parsers of the LR(k) family, where k > 0, accept the same class of lan-
guages; they simply place different, more or less restrictive demands
on the form of the grammars describing those languages.

Where LL(k) parsers create a derivation from the top down by start-
ing with the goal symbol and eventually building a derivation for the
input, LR(k) parsers build a rightmost derivation in reverse by read-
ing in the input till they determine that they have seen the body of
a production and then reducing the body to the head. They eventu-
ally reduce the entire input to the start symbol (often in this context
called the GoAaL symBoL), at which point parsing is complete. They
use a stack to store the symbols seen and recognized so far, so in the
course of parsing they carry out a very limited set of actions: shifting
input onto their stack, reducing part of the stack to a single symbol,
accepting the input as a valid word in the grammar, and indicating an
error when none of the above applies. Because of this behavior, such a

bottom-up parser is often called a SHIFT-REDUCE PARSER.

SsLR(k) PARSERS The earliest and most restricted such class is known
as the sIMPLE LR(k), or SLR(k). These parsers use a simplistic method
of determining what action to take while in a given state and reading a
given input that introduces conflicts that more sophisticated methods
would be capable of resolving. In a shift-reduce parser, there are two

possible types of conflicts:

SHIFT/REDUCE CONFLICTS where the parser has seen what it con-
siders the body of a valid production at this point in the parse
but has also seen a viable prefix of yet another production, so

it cannot determine whether to reduce using the former or shift
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further symbols onto the stack in an attempt to recognize the

latter.

REDUCE/REDUCE CONFLICTS where the parser has seen the entirety
of the body of two productions that appear to be valid at this
point in the parse and is unable to determine which to reduce

to.

LALR(k) PARSERS More sophisticated parsing methods are more
discriminating about what productions are still valid at a given point
in the parse by taking into account more or less of the parsing process
and input seen thus far, so called LEFT CONTEXT as it is to the left of
where the parser presently is in consuming the input. (In this analogy,
the lookahead symbols could be considered right context, though that
term is never used.) One such method is known as LOOK-AHEAD LR
(LALR). These parsers can be seen as “compressed LR parsers,” though
this compression can introduce spurious reduce/reduce conflicts that
would not occur in a full LR parser. This has historically been seen as
an acceptable tradeoff for the reduction in table size and construction
time, since any LR grammar can be reformulated as an LALR gram-
mar, but with more sophisticated LR algorithms developed later that
retained the full power of full LR parsers while producing compara-
ble levels of compression wherever possible (meaning that parsing an
LALR grammar with such an LR parser would require the same space
as parsing it with an LALR grammar), such a tradeoff became unnec-

essary, though it remains widespread.

TABLE-DRIVEN PARSERS  Whereas recursive descent parsers and
operator descent parsers can be hand-coded, many of the other parsing
algorithms were developed to operate by way of precomputed tables.*

They explicitly model a finite automaton, called the cCHARACTERIS-

* That is not to say that the others cannot also be implemented through tables, simply
that the table method is not felt to be the necessity that it is for these others.



4.1 FRONT END: ANALYZING SOURCE CODE

TIC FINITE AUTOMATON; the tables allow the transition function to
be implemented purely by table lookup. As hand-creation of tables
is time-consuming and error-prone, tables for parsing are generally
created algorithmically and the resulting tables used with a DRIVER
that simply does little more than gather the information necessary to

perform the operations specified by the table.

DIRECT-CODED PARSERS Parsers implemented entirely in code
(rather than as a set of tables with a driver) were long seen as some-
thing to be generated only by humans, while parsers generated from a
higher-level grammar description were to be implemented by way of
tables. However, another possibility, often faster and smaller because
of its lower overhead and its lack of a need to encode a rather sparse
table, is to have the parser generator create a direct-coded parser, a
parser that is not table-driven but yet is generated from a higher-level

description rather than being written by hand.

GLR PARSERS LR parsers are restricted to parsing only LR lan-
guages. However, a very similar technique can be used to parse all
context-free languages. GENERALIZED LR (GLR) PARSERS are more

general than LR parsers in two senses:

¢ They are able to parse all context-free grammars, not just LR

graminars.

e Their method of parsing is a generalization of that used in LR

parsers.

They generalize the parsing method of shift-reduce LR parsers by cop-
ing with ambiguity in the grammar by duplicating the parse stack and
pursuing competing parses in parallel. When they determine a partic-
ular parse is in fact invalid, it and its stack are destroyed. If the gram-

mar is in fact ambiguous and multiple parses are possible, this might
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lead to a PARSE FOREST instead of a parse tree. Making such parsers
feasible requires some effort, and part of that effort was to replace sev-
eral duplicate parse stacks by what amounts to a “parse lattice” that
share as many grammar symbols as possible as parses converge and
diverge, much reducing the space requirements of the parser as well as
time spent repeating the identical shifts and reduces on different parse
stacks. It is also important to employ similar compression methods as
with the newer LR parser generation algorithms, so that extra space
and time is only employed as strictly necessary to deal with non-LR

constructs.

SEMANTIC ACTIONS We generally desire to know more than that
a given input is grammatical: we want to create a representation of
the information discovered during parsing for later use. This is done
by attaching SEMANTIC ACTIONS, to productions in parsers and to
recognized tokens in lexers. Such actions are invoked when the pro-
duction is reduced or the token recognized, and they are used to build
the representation and, in the lexer, to emit the recognized token for
the parser’s use. They also can be used to compute attributes of the

nodes in the parse tree, as discussed next.

4.1.3 Semantic Analysis

SEMANTIC ANALYSIS, also known as CONTEXT-SENSITIVE ANALY-
s1s, follows scanning and parsing. Its job is to “understand” the pro-
gram as parsed. Not all elements of the language can be checked by
either regular expressions or context-free grammars; checking these
falls to the semantic analyzer. Approaches to semantic analysis vary
widely; while a formalism that permits generating semantic analyzers

from a higher-level description, as is done for lexers and parsers, exists,
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its use has yet to become widespread. Frequently, semantic analysis is
done purely through ad hoc methods.

A program in truth has two aspects to its semantics, the static and
the dynamic. STATIC SEMANTICS are those aspects of the program’s
meaning that are fixed and unchanging. A common example is the
type of variables (though there are languages that employ dynamic
typing). These aspects are particularly amenable to analysis by the
compiler, and information derived from understanding them can be
used to optimize the program. A program’s DYNAMIC SEMANTICS
are those aspects of the program that are only determined at runtime.

Nevertheless, a compiler can attempt to prove through analysis cer-
tain properties of the running program, for example, that an attempt
to access an array element that does not exist (the eleventh element
of a ten-element array, for example) can never occur. Some languages
require that the compiler guarantee certain runtime behavior: if it is
unable to provide that guarantee at compile time through analysis,
the compiler must insert code to check the property at runtime. Java,
for example, requires that no out-of-bounds array access occur: any
such attempt must be refused and raise an error. Since these runtime
checks can slow down a program, a frequent point of optimization in
languages requiring such checks is proving at compile-time properties
that enable the omission of as many such checks as possible from run-
time. Many languages, particularly older languages, do not require
runtime checks even where they might be worthwhile, while some
compilers might permit disabling the insertion of runtime checks, an
option favored by some for the generation of final, production code

after all debugging has occurred.

Attribute Grammars

The formalism mentioned above for generating semantic analyzers is

that of ATTRIBUTE GRAMMARS. Attribute grammars can be seen as
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an evolution of context-free grammars. They begin by taking the gram-
mar symbols of the grammar and associating to each one a finite set
of ATTRIBUTES. They next take the grammatical productions and as-
sociate to each one a similarly finite set of sEMANTIC RULES. Each
rule is a function that describes how to calculate a single attribute of
one of the symbols of the production (which attribute we shall call the
TARGET of the semantic rule) in terms of any number of attributes of
any of the symbols of the production. Where the same symbol occurs
multiple times in the same production, subscripts are used to differ-
entiate the different occurrences of the symbol. To refer to a symbol’s
attribute, we follow the name of the symbol with a dot and the name
of the attribute, so that A.x would refer to the attribute x of the symbol

A. These conventions are amply illustrated in Fig. 6b on page 61.

INHERITED AND SYNTHESIZED ATTRIBUTES Recall that each gram-
matical production has two parts, a single symbol called the head and
a body of some symbols that is derived from the head. The set of at-
tributes of the symbols are likewise partitioned into two disjoint sets,
those that can be the target of a semantic rule when the symbol is in
the head of the production, called SYNTHESIZED ATTRIBUTES, and
those that can be the target of a semantic rule when the symbol is part
of the body of the production, called INHERITED ATTRIBUTES.

Consider as an example the second production in Fig. 6b on page 61,
ADDER; — DEF ’. ADDER;. Any attributes of ADDER; targeted by a semantic
rule in this production must be by definition synthesized attributes,
while any targeted attributes of the other three symbols DEF, *.”, and
ADDER, must be inherited attributes. If you check the attributes that are
in fact targeted against the table of symbols and attributes in Fig. 6a
(also on page 61), you will find that this is indeed the case.

You might notice in the same table that some entries are prohibitory

dashes. That is because every symbol can have both synthesized and in-



Figure 6:
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An attribute grammar
The nonterminals are GOAL, ADDER, VAL, SUM, and DEF. The terminals
are NAME, NUM, and the single characters ., +, and =. The start symbol
is the head of the first production, GOAL.
(a) Symbols and Attributes

Start and terminal symbols are prohibited from

having inherited attributes, hence the dashes. An

empty entry indicates the symbol has no at-

tributes of that type, though it could.

ATTRIBUTES

SYMBOL INHERITED SYNTHESIZED

GOAL - total
ADDER defs total
SUM defs total
DEF defs pair
VAL defs amt
NUM - amt
NAME - txt
+ -

(b) Productions and Rules
An unquoted string of non-whitespace characters represents a single
grammar symbol. Characters between single quotation marks represent
themselves as symbols in the production.

PRODUCTION SEMANTIC RULES
GOAL — ADDER GOAL.total «— ADDER.total
ADDER7 — DEF '.’' ADDER» DEF.defs <— ADDER;.defs

VAL

ADDERj.defs < DEF.defs U DEF.pair
ADDER7.total «— ADDER;.total

ADDER — SUM '.’ SUM.defs «— ADDER.defs
ADDER.total «— SUM.total
— NAME VAL.amt < {sndp | p € VAL.defs
A fstp = NAME.txt}
— NUM VAL.amt = NUM.amt

VAL
SUM;

SUM
DEF

— VAL '+’ SUM» VAL.defs «— SUMq.defs

SUM;.defs «— SUM;.defs

SUMj.total «<— VAL.amt + SUMy.total
— VAL SUM.total < VAL.amt
— NAME ’'=' SUM SUM.defs <— DEF.defs

DEF.pair < (NAME.txt, SUM.total)
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herited attributes, except terminal and start symbols, which are not al-
lowed inherited attributes. Terminal symbols are often prohibited from
having inherited attributes so that attribute grammars can be readily
composed to form larger attribute grammars by identifying a terminal
symbol of one grammar with the start symbol of another. Likewise,
they are allowed to have synthesized attributes with the assumption
that the values of these attributes will be provided by some source ex-
ternal to the attribute grammar itself, such as another attribute gram-
mar or the lexer. In terms of a single grammar, the start symbol cannot
have any inherited attributes since it is never part of a production body.
If we compose grammars, the start symbol will still have no inherited
attributes, since we have barred terminal symbols from having inher-
ited attributes.

We could, for example, compose the ADDER grammar of Fig. 6, page 61,
with a NUM grammar for parsing a variety of numerical formats, such as
signed integers and scientific notation. The sole modification we might
have to make to the NUM grammar is to convert the information stored
in its attributes for storage in the sole amt attribute of the NUM symbol
of the ADDER grammar. This easy composition is made possible by the
conventions barring terminal and start symbols from having inherited
attributes. If terminal symbols had to take into account inherited infor-
mation, more extensive modifications of the grammars would often be

required before they could be composed.

THE ATTRIBUTED TREE In terms of a parse tree, a synthesized
attribute is computed from attributes at or below itself in the parse
tree, while inherited attributes are computed from attributes at their
own level or above them in the parse tree. Thus, the computation of
synthesized and inherited attributes can be viewed respectively as in-

formation flowing up and down the parse tree.
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In fact, the parse tree is central to how attribute grammars are used.
A bare parse tree is the fruit of a context-free grammar. With an at-
tribute grammar, we produce a parse tree wherein every node is dec-
orated with its own instances of the attributes associated to its sym-
bol. Every node where a given symbol appears will have the same
attributes, but the values of the different instances of the attributes can
differ. A parse tree annotated as described with attribute occurrences
is called an ATTRIBUTED TREE. Fig. 7 on page 64 provides a small ex-
ample of an attributed tree for a word in the language of the attribute

grammar of Fig. 6 (page 61).

ATTRIBUTE EVALUATION With the bare parse tree become an at-
tributed tree, the stage is set for us to use the semantic rules to assign
concrete values to the tree’s attribute instances. This process of compu-
tation is known as ATTRIBUTE EVALUATION. Provided attribute eval-
uation terminates, the attribute grammar formalism defines the mean-
ing of the program (which now makes up the leaves of an attributed
tree) to be the values of the attributes of the start symbol.

This definition of attribute evaluation, however, is purely descrip-
tive. When we look to perform attribute evaluation, things are not so
simple. Attribute evaluation will not necessarily terminate,* and deter-
mining an appropriate order for evaluation such that evaluation can
be performed efficiently is nontrivial.

Part of making this formalism usable involves, as with context-free
grammars, finding restricted classes of attribute grammars that are suf-

ficiently powerful to capture the semantic information desired while

still allowing efficient evaluation. Two such classes are the s-ATTRIBUTED

GRAMMARS and the L-ATTRIBUTED GRAMMARS. S-attributed gram-
mars admit only synthesized attributes. They can thus be evaluated

during a simple bottom-up walk of the parse tree like that performed

A simple example is the production A — B together with the semantic actions
A.x < B.x+ 1 and B.x < A.x + 1, which together cause a loop that repeatedly
increments A.x and B.x.
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Figure 7: An attributed tree

The bottom-most row is external to the grammar. It would be pro-

cessed by the lexer and transformed into the terminal symbol tokens
shown immediately above that row.
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by a shift-reduce parser. L-attributed grammars loosen the restrictions
imposed by S-attributed grammars somewhat. In addition to synthe-
sized attributes, they allow semantic rules targeting the attributes of
a symbol By in a production A — BB, ---By to use any attributes
of A or By ---By_1. In terms of the attributed tree, this allows a sym-
bol’s attributes to be computed in terms of those of either its children
(in the case of a synthesized attribute) or those of its parent and the
siblings to its left (in the case of an inherited attribute). Like the S-
attributed grammars, L-attributed grammars admit information flow
from bottom-to-top within the parse tree, but they also allow for left-
to-right information flow. This is a natural match for a left-to-right,
depth-first walk of the parse tree, as occurs during recursive descent
parsing.

Problems faced by practical implementations of the attribute gram-
mar formalism include the management of storage for the multitude
of attribute instances used during evaluation and the amount of at-
tributes that exist solely to share non-local information. Non-local in-
formation is in general a problem with attribute grammars, and while
a symbol table can be used alongside the grammar to avoid this issue,

it is also an end-run around the formalism.

4.2 INTERMEDIATE REPRESENTATIONS

Translation begins with a source language and ends with a target, but
those are rarely the only representations of the program used during
compilation. Between the initial representation of the source code in-
put to the compiler and the final representation of the target code out-
put from the compiler, the compiler will use various INTERMEDIATE
REPRESENTATIONS (IRS). These need not resemble either the initial
or final representation in the least, and the compiler is not restricted

to use only one intermediate representation. Intermediate representa-
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tions are, in a sense, common, private languages used within and be-
tween different parts of a compiler that support the operation of those
parts.

The intermediate representations chosen affect all parts of the com-
piler, both on the superficial level of simple representation of the code
and on the deeper level of how the compiler carries out its transla-
tion and even how much the compiler can prove about the runtime
behavior of the code to exploit in optimizing it.

For all its importance, intermediate representations remain more a
matter of craft than science. Many IRs have been used — estimates of
two for every compiler ever created are likely conservative —, but this
myriad of IRs nevertheless is susceptible to categorization along vari-
ous axes. Two such axes are the form of the intermediate representa-

tion and its level of abstraction.

4.2.1 Form

Intermediate representations divide broadly into classes based on their
structure: those whose structure is linear, and those whose structure is
GRAPHICAL, an artificial term meaning “graph-like” that has nothing

to do with graphics or visual display.

Linear

Linear IRs resemble the structure of most programming languages,
in that they have an implicit sequencing: begin at the beginning and
process each instruction in turn till the last instruction is processed.
Jump instructions of some form or another — either as higher-level,
structured control flow constructs such as while and for, or as lower-
level jumps and branches to labeled statements (or, at an even lower
level, to statements a certain offset away) — can be used to explicitly

alter this implicit order.
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Linear IRs have the advantage of being easy to represent for debug-
ging or otherwise observing the actions of the compiler. They can also
be easily written out to a text file. They simply become lines of text.
Their flat, linear structure can also be a disadvantage. They have no
easy way to share identical lines between sections beyond threading
through them again via jumping. This can inflate the size of the IR
code and hide redundant computations. At the same time, because of
their similarity to most target languages, a linear IR can be a very good
choice for when a compiler must finally perform target code genera-

tion.

Graphical

Graphical IRs are so-called because they represent the program as a
graph with arcs and nodes rather than as a large, linear sequence. De-
pending on the graphical IR used, this can obscure control flow, but
it can also represent higher-level structure than is possible in a lin-
ear IR. Tree-based IRs suffer from the same issues of size and repeti-
tion of common substructure as textual IRs. Graphical IRs based on
DIRECTED ACYCLIC GRAPHS, which can be thought of as trees that
admit merging of branches,” can avoid both of these faults, though
since, in imperative programming languages, x at one point in the pro-
gram need not be the same as x at another, the textual identity of two
repetitions of compute(x) may not actually be a sign of redundant com-
putation. Graphical IRs always introduce a question of representation:
many data structures can be used to represent graphs and many algo-
rithms can be used to carry out the same operation, and each choice of
data structure and algorithm has its own tradeoffs.

It is also not convenient to represent a graphical IR as some form

of output for human consumption; the IR must either be sequenced

Or, if you are more mathematically inclined, can be thought of as directed graphs
restricted not to have cycles, that is, a sequence of arcs leaving one node that can
be traversed obeying their direction in order to return to the initial node. It is clear
which viewpoint prevailed in the name of the structure.
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and encoded into a linear form, or more complex and time-consuming
techniques must be employed to create a pictorial representation. This
latter is not an option for storing information for the compiler’s con-
sumption: the IR must then be encoded into a linear representation,
though the compiler does not require a textual representation — a novel
binary representation developed to suit the compiler’s needs might in
this case be the better choice. Regardless of problems of representation,
many operations performed by the compiler are best expressed as op-
erations on a graph, and a graph is often the most natural form to view
the code from, as in the CONTROL FLOW GRAPH that graphically de-
picts blocks of sequentially executed code (so-called BASIC BLOCKS)

connected by directed arcs to blocks that control might transfer to.

4.2.2  Level of Abstraction

intermediate representations can also be classified by their level of ab-
straction. Some levels of abstraction are more appropriate for the ap-
plication of some optimizations than others. Some optimizations can
usefully be used at many levels of abstraction, while others can only
be used at a certain level of abstraction: for example, optimizations
dealing with register usage require that register usage be exposed by,
expressed in, and directly manipulable through the intermediate rep-
resentation. In this case, only a low-level intermediate representation
will do.

High-level intermediate representations are frequently very close to
the source language. They often include direct representations of struc-
tured control flow and indexed array accesses. However, much like the
source language itself, they are not very suitable for the application
of many optimizations, so they see only limited use within a com-
piler. An example of a high-level linear intermediate representation

would basically be a simple high-level programming language. A com-
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mon high-level graphical intermediate representation is the ABSTRACT
SYNTAX TREE (AST). An abstract syntax tree is something of an abbre-
viated parse tree; it omits “uninteresting nodes” and eliminates the
lower-level information of the parse tree in favor of a more semanti-
cally relevant and concise form.

Mid-level intermediate representations are much like high-level in-
termediate representations, except that they will generally require ex-
plicit computation of array accesses and eliminate structured control
flow in favor of labels, jumps, and branches. It is very possible to blend
high- and mid-level intermediate representations.

Low-level intermediate representations expose many more details
about the target language and target machine. While this strongly sug-
gests use of what is virtually the assembly language of the target ma-
chine, it is still possible to employ a graphical intermediate represen-
tation. Such an intermediate representation will have to provide a way
to indicate indirection through memory addresses (in the jargon of C

and its relatives, this would be called “pointer dereferences”).

4.2.3 Static Single Assignment Form

STATIC SINGLE ASSIGNMENT (SSA) FORM is something of a hybrid
intermediate representation. It can be used at any level of abstraction
that represents explicit variables. It aims to make explicit which def-
inition of a variable each use refers to. It does this by treating the
redefinition of a variable as the definition of a new variable; the dif-
ferent variables created by variables that were multiply defined in the
original intermediate representation are often presented as subscripted
variable names, so that agp would correspond to the original definition
of the variable a, and a1, az, and so forth to subsequent redefinitions

of this variable.
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To put a program in ssa form, one begins with a linear intermediate
representation. One next constructs around this a control flow graph.
If you draw out a few control flow graphs, this will demonstrate an
obstacle to putting a program in static single assignment form: what
do we do when two different definitions of the same variable could
prevail at the same point in the program? This problem motivated the
most peculiar element of ssa, PHI FUNCTIONS. These are used to
deal with control flow that would otherwise defeat the aim of every
variable in every block having a single, unambiguous referent. When-
ever two definitions of a variable can reach the same block, the variable
is considered to be redefined with the appropriate definition based on
which in-arc control flow enters the block from. Thus, if both ay and
a1 could reach the same subsequent use of a in the initial intermedi-
ate representation, a phi function would be introduced to supply the

appropriate definition of a:

a — d(ap,a1)

4.2.4 Symbol Tables

We include along with the intermediate representation the tables of
information maintained by the compiler. The most prominent of these
is the sYMBOL TABLE, which records information on all symbols —
variables, function names, and the like — in use in the program. The
type of information in the symbol table reflects where in the compila-
tion process the compiler is and partially determines the level of the
current intermediate representation. Basic information is usually gath-
ered through cooperation between the scanner and parser and is often
necessary for and augmented during static semantic analysis. Other
parts of the compiler will introduce further annotations to the sym-

bols. The information stored for a symbol might include details such
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as the name, storage class (statically allocated, dynamically allocated,
or created and destroyed along with a procedure), type, size, and much
more. Use of a symbol table is in some senses analogous to allowing
all semantic rules access to the attributes of the goal symbol: the ta-
ble provides a way to readily aggregate information collected from a

variety of places, in a variety of ways, at a variety of times.

4.3 MIDDLE END: OPTIMIZING THE IR

The middle end comes, as one might expect, between the front and
back ends. Since it follows the front end, it has at hand the program
in some form of intermediate representation that encodes, not only
the program, but useful information about the program. It precedes
the back end, since its efforts can go some way towards easing the
work of the back end. The purpose of the middle end is, given the
program in some form, to work with that, possibly by manipulating it
through various intermediate forms, to optimize the program. This is a
rather vague aim with many possible interpretations, and this variety
of interpretations is reflected in the variety of middle ends.

What does it mean, to optimize a program? In some sense, the entire
compiler’s work is an optimization of the program: it is given source
code, a static, lifeless description of a program, and it produces a di-
rectly executable description of a program. This is the most significant
improvement of all that a compiler makes. It is not surprising, then,
that it took some time for the middle end to become a distinguished
part of compiler architecture.

In general, though, when we speak of optimization without any
clarification, we are talking about optimization for runtime speed. A
program that is slow to respond is frustrating, and a program that is
slower than necessary is wasteful of its users’ time. In the past, when

space was at a premium, it was acceptable to trade off speed for a
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smaller code size: a program you cannot fit in the available memory is
no more executable than the original source code and is even more use-
less; you can at least read and learn something from the source code.
Optimizations for code size are still important when it comes to limited
memory situations like those encountered in embedded systems and
in situations where the resultant program must be transmitted through
a low-bandwidth channel. In addition to code size, space optimization
can also attempt to minimize runtime usage of space. A software de-
veloper working on a program will want a completely different sort of
optimization, one that enables the easiest debugging and most helpful
profiling.

Speed, space, debugging, profiling — doubtless you could come up
with more optimization goals. While these goals of optimizing one or
another property of the program sometimes align, they also frequently
compete. Different compilers will be better or worse at different kinds
of optimization. Some will let you configure the optimizations they
perform, though their inbuilt preference for one or another kind of
optimization will still show itself in the diversity and quality of op-
timizations of the different kinds available. Sometimes, the available
optimizations can be switched on and off in ways that would mean
something to the casual user, like letting the user specify different lev-
els of optimization or that the end product should support debugging,
for example, the GNU compiler collection’s (GCC'’s) family of optimiza-
tion flags -0, -00, -01, ..., -03 and its debugging family beginning
with -g. Sometimes, the optimizations can only be switched on and
off in their own cryptic language; some examples from GCC would be
-ftree-dominator-opts and -fgcse.

We will be focusing on optimizations for speed, but even there, there
is much room for variation. Optimization happens piecemeal: each op-
timization attempts to produce a specific sort of improvement. Some

improvements can hinder others. Some complement each other. Of-
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ten, the interaction of two optimizations cannot be predicted, since the
specifics of their interaction will depend on the target architecture and
the function being compiled. When you consider that a whole host of
optimizations is going to be performed, some of them multiple times,
it becomes clear that the question of which optimizations should be
performed when is not a trivial problem.

Optimizations are particular to their purpose and the type of pro-
gram representation they work with. We discuss optimizations for im-
perative languages in Chapter 9, orTIMIZING and the optimizations
used in compilers for two different functional languages in [sections

to be written].

4.4 BACK END: GENERATING TARGET CODE

The BACK END is responsible for completing the work of a compiler. It
receives the program in some intermediate representation, itself might
construct various further intermediate representations of the program,
and ultimately produces the final representation, the program in the
target language. The intermediate representation expresses a compu-
tation in a form understood by the compiler. The back end must take
this and express it in the target language. This requires finding trans-
latable units and recording their translation, then sequencing these
translations for the best effect. This translation must obey whatever
resource limits exist in the target language.

Here, we will focus on an instruction-set language as the target lan-
guage. In this setting, the task of choosing how to represent the ele-
ments of the intermediate representation in the target language corre-
sponds to instruction selection; ordering the translations corresponds
to instruction scheduling; and working within the limits of the target

language corresponds to register allocation.*

This is true if the intermediate representation treats all data as being in registers
except when it cannot. If the intermediate representation instead leaves all data in
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These tasks are not cleanly separated. Choices made in each can (and
when they cannot because of particular architectural decisions, they
perhaps should) affect the others. The instructions selected to express
a particular subcomputation can increase or decrease the demand on
registers, which can require instructions be inserted to free up registers
for other computations. The introduction of new instructions would
strongly suggest that the whole sequence of instructions be resched-
uled, which can again introduce problems with register load. Never-
theless, we will discuss them separately, because that is how they are

best dealt with.

4.4.1 Instruction Selection

Instruction selection provides the basic material of the program in the
target language. While instruction scheduling and register allocation
are necessary for correctness, they simply rework the instructions gen-
erated in instruction selection.

Instruction selection is tasked with bridging from an intermediate
representation to the actual target language. As with bridges, the nearer
one side is to the other, the easier it will be to bridge the gap: the closer
the intermediate representation is to the target language, the easier the
job of instruction selection. If the intermediate representation is not
very low-level, it will be necessary to convert it to something low-level.
This will likely not be a very clean conversion if left to so late in com-
pilation; there will be a lot of code meant to work around possible
problems that may or may not be present because the results of earlier

analyses that matter at a low level were not represented in the inter-

memory and moves it into registers for only as long as necessary, then REGISTER
PROMOTION, which is the process of figuring out what data can be promoted from
storage in memory to storage in register and then promoting it, is a better word for
what occurs than register allocation. This promotion step is more a matter of taking
advantage of the power of the language rather than one of restricting the translation
to obey the language’s limits. We will discuss register allocation here, but similar
techniques apply to register promotion.
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mediate representation. If the intermediate representation is low-level,
but its architectural model differs from that of the target platform — the
intermediate representation is stack-based or resembles the assembly
language of a RISC machine, while the target platform is a CISC ma-
chine, say — it will be more difficult to perform instruction scheduling.

However difficult it might be, the same basic ideas suffice for in-
struction selection. To avoid clouding the exposition, we will assume
the low-level intermediate representation that enters instruction selec-
tion is tree-based. A simple approach would simply walk the tree and
generate, whenever possible, general instructions that ignore related
nodes. A more complex approach would attempt to use local opti-
mization and awareness of related nodes to build up a sequence of
instructions.

A rather different approach uses a technique called peephole opti-
mization that was originally developed to perform some last optimiza-
tions on the target code. It used a library of patterns to simplify a small
window, or peephole, of a few instructions at a time. By scrolling this
window through the entirety of the target code, less efficient code pat-
terns could be replaced with more efficient counterparts. The limited
window size keeps the process very quick, but all the same, it is able

to perform some useful optimizations.

A Simple Tree-Based Approach

The simplest approach would generate instructions during a single
tree walk. This would not be much more complicated than flattening
the tree. It would also not produce very good code, since it would
either make no use of context or only very limited use. Context is
essential to producing a decent instruction sequence. A number of in-
struction sequences can be used to encode even straightforward arith-
metic statements. Consider x = y + 4. Focusing on one node at a time,

a RISC-like instruction sequence might load y into a register, load 4
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into a register, sum those values and store the result in yet another

register, which becomes x.

Ty <Y
T4 — 4
Ty+4 <—add Ty T4

Tx < Ty+4

If we consider a bit more of the tree, we might load the value of y into
a register, then use an immediate addition operation to compute y + 4

and store the result into a register that represents x.

Ty <y

Tx «—addi 1y 4

Naively generating code to access array elements (which is how lo-
cal variables are frequently represented at a low level in a program)
can result in many redundant computations as part of the offset from
the start of the array is calculated and recalculated and shared ele-
ments of the computations are not reused. Trying to eliminate redun-
dant computations significantly complicates the code with special-case
optimizations. Traveling any distance along this route of attempting to
hand-optimize a simple scheme strongly suggests that more complex
methods be employed. Fortunately, more complex methods are avail-

able.

Tree Pattern-Matching

Tree pattern-matching methods are instruction selection methods that
use a store of tree patterns to build instructions. A common approach
is that of BOTTOM-UP REWRITE SYSTEMS (BURS). Bottom-up rewrite

systems work by tiling the tree with a stock of predefined patterns. As
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each node is subsumed by a pattern tile, a choice is made based on
the tiles of its subtrees that minimizes the cost of the tiling. The costs
can be fixed or allowed to vary dynamically during the rewriting, say,
to reflect the demand on registers introduced thus far. The costs can
represent whatever it is one wishes to optimize for during instruction
selection: code size, power consumption, execution time, or whatever
else.

The patterns and costs used by a bottom-up rewrite system in tiling
the tree can readily be represented in a table, which suggests the use of
“code generator generators” similar to the lexer and parser generators
used in producing the front-end, and such do exist. The rewrite rules
make use of context-free grammars. Productions represent the shape
of the tree. Costs are associated to each production, along with code
templates. This is quite similar to an attribute grammar, and a bottom-
up rewrite system likely could be described in that framework.

To tile the tree, we work from the bottom up, considering one node
(as the root of a subtree) at a time. The tiling proceeds by identifying
productions whose bodies match the subtree headed by the node cur-
rently under consideration. The least costly production is selected, and
we move on to another node and its subtree. All the information we
need know about a subtree is encoded in the head of the production
selected when its root was considered. Once we have tiled the entire
tree, a traversal fills in the code templates and records the instruction
sequence.

This tree pattern-matching process is highly suggestive of number
of other processes, which suggests adapting their techniques to fit this
purpose. There are the classic pattern matchers, the finite automata;
the context-free grammar component as well as the bottom-up method
suggests adapting parsing techniques; a tree flattened into a string
could perhaps be attacked using string matching methods (which, in

many cases, ultimately end in use of finite automata); or, now that
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the problem is better understood, we can hand-code a tree pattern-

matching program.

Peephole

Peepholes are generally thought of in terms of PEEPHOLE OPTIMIZA-
TION, as briefly described at the start of our discussion of the back
end. However, their methods can also be used for instruction selection
alongside optimization. The problem again reduces to pattern match-
ing, but unlike in our discussion of tree pattern-matching, we assume
the intermediate representation used for pattern matching with a peep-
hole is linear, like the assembly code instruction sequences that peep-
holes were intended to optimize.

Instruction selection through a peephole begins by transforming the
intermediate representation to an especially low-level form that mod-
els all the side-effects of instructions on the target machine. The peep-
hole is used to simplify this instruction sequence and then to match
patterns in this simplified sequence. These patterns are associated with
code in the target language. Unlike the bottom-up methods used for
trees, here the patterns are matched linearly and sequentially (visually,
from top to bottom in the normal way of writing code).

What kind of simplifications can be seen through a peephole? Within
a peephole, we can avoid unnecessary storage of temporary values in
registers by substituting the value itself in place of its register in oper-
ations using the register. We can recognize a store followed by a load
of the same value. Some simplifications might enable other simplifi-
cations. If we give the simplifier knowledge of when a given value is
used by preprocessing the expanded low-level IR, we can jump back
up and eliminate computation and storage of a value if later simplifi-
cations eliminate all its uses. Control flow complicates matters: should
we use a strictly static window, or should our window include instruc-

tions that might follow during execution? Should we look at all uses
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of a value together, ignoring intervening instructions, and proceed
that way? The basic idea is amenable to considerable sophistication;
the pattern-recognition and simplification part is, as with tree pattern-
matching, also producible through a generator, at least as far as its
basic elements go.

Clever implementation can enable the instruction selector to learn
about simplification patterns. One can use well thought-out heuristics
to quickly generate and test a variety of instruction sequences of var-
ious costs, simply by pasting together operations. Sequences that do
no have the same effect as that identified for improvement are quickly
discarded. Guided by a skilled compiler implementor and a suitable
sampling of programs, this exhaustive search approach can be used
during development to generate a sophisticated library of simplifica-

tion patterns for later use.

4.4.2 Instruction Scheduling

Instruction selection produces a sequence of instructions, but its con-
cern is generating instructions that can carry out the needed compu-
tations, not making sure all the instructions will work together: Does
a use of a value come too soon after its definition, while the value is
still being computed and not yet available? Will this introduce an error
in the program, or simply unnecessary delay? Instruction scheduling
worries about problems like these. It tries to ensure the selected in-
structions will work well together by reordering them. Its prime direc-
tives are to enhance instruction-level parallelism and reduce the time
required by the program. It works at the block-level so that it does not
have to deal with the consequences of control flow. It is hoped that
stitching the scheduled blocks together will result in a good enough

overall schedule, and this hope is generally realized.
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Listing 4.1: Example of control dependence

bgtz rx — TARGET
instructions...
TARGET: instructions...

Listing 4.2: Example of data dependences

Tx <— 4
Ty Tx + 1
T, —Tx X 5

Tx < 5

What limits are placed on reordering? These limits are best expressed
in terms of DEPENDENCES between instructions.” We always speak of
the later instruction as depending in some way on the earlier. There are
a variety of ways one instruction can depend on another. Perhaps the
most obvious sort of dependence is CONTROL DEPENDENCE, when
a sequence of instructions only executes if some condition is met. For
example, in listing 4.1, the instructions between the first line and the
line labeled TARGET are control dependent on the first line’s instruc-
tion, which says to branch to the instruction labeled TARGET if the value
in register ry is greater than zero, since their execution depends on
whether the first line sends the flow of control immediately to TARGET,
skipping over them, or not.

Reordering also must respect DATA DEPENDENCES in the initial
instruction sequence. To understand data dependence, it is necessary
to think of an instruction as receiving input and producing output,
which it stores in an output location, frequently a register. For example,
the addition instruction in line two of listing 4.2 takes as input r, and
1, produces their sum, and stores that value in the register ry.

There are several types of data dependence. A TRUE DATA DEPEN-
DENCE eXists between two instructions when one requires a value cre-

ated by another, that is, an input of the one is the output of the other:

+* We do indeed mean “dependence” (plural “dependences”) and not “dependency”
(plural “dependencies”).
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we cannot use a value before it has been defined. Such is the case in
lines one and two of listing 4.2, since the value stored in ry on line
two depends on the value of ry defined in line one. Two instructions
are OUTPUT DEPENDENT when both modify the same resource, that
is, when both have the same output location. In listing 4.2, the instruc-
tions on the first and fourth lines are output dependent, since both
store to ry.

You might wonder whether it is also possible for instructions to
be input dependent. It is not, as instructions are not kept from hav-
ing their relative orders inverted simply because they share an input:
whether line two of listing 4.2 precedes line three or line three precedes
line two, both orders will result in the same values being stored to r
and r,. However, the idea can be useful, so some compilers will track
it nevertheless as a sort of INPUT PSEUDO-DEPENDENCE.

In addition to these various kinds of data dependence, reordering
must respect or eliminate ANTIDEPENDENCES. These are dependences
between instructions that exist, not because of data flow, but because
of conflicting uses of the same resources: specifically, one instruction
is antidependent on a preceding instruction when its output location
is used as input to the earlier instruction. The dependence is created
solely by the reuse of the location: if the later instruction were to out-
put to a different location and no other dependence existed between
the two instructions, then they could be freely reordered with respect
to each other. In listing 4.2, the instruction on line four is antidepen-
dent upon both preceding instructions.*

These dependences can be used to create a DEPENDENCE GRAPH
(also called a PRECEDENCE GRATPH) representing the program, where
each instruction is a node and there is a directed edge from a first
node to a second whenever the second depends on the first. The graph

is used along with information about the target platform to produce a

Looping structures present a mess of dependence problems of their own. However,
we do not discuss them here, as they are generally the target of analysis and opti-
mization in the middle end.
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schedule, which associates each instruction-node with a positive inte-
ger specifying the cycle in which it should be issued. The information
needed is the functional units required by the instruction and the num-
ber of cycles the instruction takes to execute, called the DELAY of the
instruction. If no value is required in the schedule before it is ready, the
schedule will be correct. If there are never more instructions executing
than the functional units can handle, and there are never more instruc-
tions dispatched in a cycle than is possible for the target platform, the
schedule will be feasible. Within these constraints, we must attempt
to schedule the instructions so that all dependences are respected and
the cost of the schedule (often, the amount of time it requires) is mini-
mized. This, of course, is an ideal that we cannot guarantee in practice.

The graph can be usefully annotated with the cumulative delay to
each node starting from a root. The path from a root of the dependence
graph to the highest-numbered leaf is called the cCrRITICAL PATH and
critically determines the length of the schedule: no matter what, it can
take no less time than the annotation at the leaf endpoint of the critical

path.

List Scheduling

The dominant paradigm for scheduling is called LIST SCHEDULING.
The basic idea of the method is, first, to eliminate antidependences by
renaming the contested resources; next, to build the dependence graph;
then, to assign priorities to each operation (for example, as determined
by the cumulative delay at that operation’s node); and, finally, to sched-
ule the instructions in priority order as their dependences are fulfilled.
This last step simulates the passage of cycles in order to track when
operations can safely be scheduled and record the resulting schedule.
Clearly, there is a lot of detail missing from this sketch. The prior-
ity scheme used, for example, has an important effect on the result-

ing schedule, as does the tiebreaking method between operations with
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identical priorities. There is no consensus on the best priority scheme,
likely because there is no such thing. Further, we can perform schedul-
ing either forward or backward. Working forward, we first schedule
the instruction we want to execute in the first cycle, then repeatedly
update the cycle counter and select the next instruction to execute. Be-
fore scheduling an instruction, we must check that sufficient cycles
have passed that all instructions it depends on have completed. In the
dependence graph, then, forward scheduling works from the leaves to
the roots. Working backward, roots are scheduled before leaves, and
the first operation scheduled executes last. We are then scheduling
each instruction before the instructions it depends on. When we were
working forward, before scheduling an instruction we would check
that all instructions it depended upon had been completed in the sim-
ulation; now, working backward, we first schedule an instruction and
then delay scheduling each instruction it depends on until we are far
enough in advance of that instruction in our simulation that its result
will be available to the already scheduled instruction. Neither forward
nor backward scheduling is always best; since scheduling is fairly eas-
ily done, often a block will be scheduled both forward and backward,
possibly a few times using different priority schemes, and the best of
the schedules produced is then chosen.

There is also a lot of room to elaborate the method. Why limit our-
selves to scheduling block-by-block? We can produce a better overall
schedule if we look beyond a basic block. If either of two blocks can fol-
low a single block, each successor block will work best with one or an-
other scheduling of the predecessor, but we can only schedule the pre-
decessor in one way. How should we decide which successor should
determine the schedule of the predecessor? If we were to generate
code for the region we wish to schedule, run it several times, and track

which blocks execute most frequently, we could make an informed
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decision. Some schedulers take this tack, called TRACE SCHEDULING

since it makes use of an EXECUTION TRACE, or record of execution.

4.4.3 Register Allocation

Register allocation is the final step of code generation. Instructions
have been generated and scheduled. Now, it is time to ensure they
meet the platform’s register constraints. The most fundamental con-
straint imposed on registers is the number available, but others must
also be taking into account. These include constraints on register usage
imposed by calling conventions and those imposed by register classes.

Register allocation is, in fact, an umbrella term for two closely re-
lated tasks: REGISTER ALLOCATION, which is the task of deciding
which values should reside in registers when each instruction is issued,
and REGISTER ASSIGNMENT, which takes the values to be allocated
to registers and decides which register should hold which value when
each instruction is issued.

Often, all values cannot be kept in registers. Dumping the register’s
contents to memory is called REGISTER SPILLING. Spilling a regis-
ter is necessary but expensive. At each use, the data must be loaded
into a “scratch register,” and any changes to the data must be stored
back to memory in order to free up the scratch register to load other
spilled values. Sometimes, it is cheaper to recompute a value at each
use than to go through the expense of spilling it and loading it back.
Recomputation in place of register spilling is referred to as REMATE-
RIALIZATION: rather than using previously provided “material,” we
are recreating it as needed.

Clearly, register allocation directly affects register assignment. Un-
fortunately, the interaction of the two concerns — what values should
be kept in registers, and which registers should they be kept in — are

not cleanly separated. Since we might be bound to assign particular
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sorts of values to particular registers, issues of assignment can affect
register allocation: we might be unable to use floating point registers
for anything except floating point values, and a calling convention will
likely specify that arguments to the procedure must be stored in spe-
cific registers, not just in some registers. Since marshaling data to and
from register and memory itself requires registers, we do not even have
the whole register set available.

The overall process of register allocation (which is what we shall
mean by “register allocation” from now on), then, is nontrivial.* As
with much in compiler design, we must resort to heuristics. We wish
to minimize the amount of register-memory traffic by maximizing the
amount of data kept in registers. A simple register allocator would
consider only a block at a time. At the end of a block, it would spill
all its registers. (A following optimization pass could attempt to re-
move unnecessary spills.) A top-down approach would estimate how
many times a value is used in the block, allocate those to registers
throughout the entire block, and spill the rest of the values used in
the block to memory. A bottom-up approach would work through the
block, instruction by instruction, and ensure that the operands of each
instruction are in register. Where possible, it will use values already in
register and load values into free registers. When all registers are full
and a value not in register is needed, it will spill the value whose next
use is farthest from the current instruction.

The top-down approach works, in a sense, by using detailed in-
formation about the block to set an overall policy, which it then fol-
lows. The bottom-up approach also uses detailed information about
the block, but it makes its decisions instruction by instruction, rather

than following an overall plan for the block. Its only plan is the same

In fact, it ends up being NP-complete for any realistic formulation of the problem. A
polynomial-time algorithm exists for the simplest of cases, as well as for ssa form
(see Section 4.2, Intermediate Representations for a description of ssa form), but
virtually any additional complexity — including the translation from ssa into the
processor’s instruction set language — promotes the problem to NP-completeness.
Naturally, any time you actually find yourself needing to perform register allocation,
you likely will not be dealing with the polynomial-time case.
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for all blocks: make the tough decisions (which values to spill, which
registers to use?) when it has to. This top-down-bottom-up dichotomy
persists through all types of register allocators, though much the same
effect can be achieved either way.*

More complex algorithms are required to handle register allocation
across greater regions than single blocks. Modern register allocation al-
gorithms often draw their inspiration from the graph coloring problem.
Because of this, they are called GRAPH-COLORING REGISTER ALLO-
CATORS.

Graph-coloring register allocators begin by reformulating the prob-
lem of register allocation in terms of LIVE RANGES. A definition of a
variable is LIVE until it is KILLED by a redefinition of the same vari-
able. For example, if I assign 5 to the variable n, that definition is live
until I later assign another value to n, say 6. The extent of the pro-
gram where the definition is live is its live range.T All uses of the vari-
able within a definition’s live range refer to that definition. These live
ranges are in competition for the limited supply of registers. Where
they overlap, they are said to interfere with each other. From this, it
is simple to construct an INTERFERENCE GRAPH: each live range is a
node, and two nodes are joined by an edge whenever their live ranges
interfere. Coloring a node corresponds to assigning its live range to a
register.

After we have constructed the interference graph for a region, the
nodes divide into two fundamental groups. Those nodes with more
neighbors than there are registers are CONSTRAINED, while those

with fewer are UNCONSTRAINED. This captures a basic distinction:

It is an artifact of our simple description that the top-down allocator will dedicate
a register throughout the entire block to a value heavily used in the block’s first
half but unused in its second, while the bottom-up allocator will choose to spill the
value once it is no longer needed. Getting the top-down allocator to behave similarly,
however, would make it less simple.

In this case, we are concerned with the STATIC EXTENT, or SCOPE, of the definition.
This is made explicit when the program is represented in static single assignment
form. There is a corresponding notion of DYNAMIC EXTENT, which is the period of
time when the definition is live at runtime, but this does not concern us here except
as it is reflected in the definition’s static extent.
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the live ranges represented by unconstrained nodes can always be
assigned to a register; those represented by constrained nodes must
compete with their neighbors in the interference graph for the limited
number of registers.

A top-down graph-coloring register allocator will use this graph
to prioritize the live ranges. It will first try to color the constrained
nodes based on the estimated cost of having to spill their associated
live ranges. After that is done, it is trivial to color the unconstrained
nodes. The devil lies in how to estimate spill costs and how to handle
cases where this process results in nodes that cannot be colored.

Rather than using an overall estimate to determine the nodes’ color-
ing priorities, a bottom-up allocator will work directly from the inter-
ference graph, node by node, to decide the order in which it will try to
color the nodes. For example, it might pluck them out one by one, be-
ginning with the unconstrained nodes, and place them on a stack.” To
color the nodes, it works through the stack from top to bottom, grad-
ually rebuilding the interference graph. It removes a node from the
stack, reinserts it and its edges into the graph, and attempts to color it
in the graph as it stands then.

If this process succeeds in coloring all nodes, register allocation is
complete; otherwise, the bottom-up allocator must select nodes to spill
and then insert the code to handle the spilled value.' If it has reserved
registers to deal with this as we assumed earlier, allocation is complete,
though such reservation might create a need to spill. On the other, if it
has not, the changed program, which now incorporates the spill code,

must undergo analysis and allocation anew.

The bottom-up allocator would remove unconstrained nodes first for two reasons.
For one, removing them first puts them at the bottom of the stack, which delays col-
oring them till the end. For another, removing them reduces the DEGREE, or number
of neighbors, of neighboring nodes in the resulting graph. A node that was previ-
ously constrained might thus become unconstrained.

An alternate tactic is LIVE RANGE SPLITTING. Instead of spilling an entire range, we
split the range into two smaller ranges. This might divide the uncolorable node into
two colorable nodes. If one split does not, further splitting eventually will: spilling
the entire range corresponds to the finest splitting of all, where each use occurs in
its own range.
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Unfortunately, the interference graph does not capture all aspects
of the problem, and so graph coloring does not provide a complete
solution. These weak spots are also the points where graph-coloring
register allocation can most be improved. This lack of a perfect fit also
leaves room for other approaches with other inspirations, such as jig-
saw puzzles: what is the best way to assemble the live-range pieces?

In the end, we do not need to find the absolute best register allo-
cation. To carry out the computation specified by the original source
code, it suffices to find a register allocation acceptable to the user. With
that done, compilation can be considered complete. The program’s
odyssey through the compiler, its journey in many guises through the

many parts, is at an end.

4.5 BOOTSTRAPPING, SELF-HOSTING, AND CROSS-COMPILING

Compilers have their own chicken-and-egg problem: Compilers are
programs written in some language that compile programs written
in a language, potentially programs written in the same language in
which they themselves are written. Compilers written in their own
source language are known as SELF-HOSTING COMPILERS and are a
particularly puzzling instance of this problem. Further, compilers run
on a variety of machines: where did the first compiler for a new ma-
chine come from? These problems have several solutions. One can go
about growing a compiler incrementally, by way of another compiler,
by way of an interpreter, or by cross-compiling.*

To grow a compiler incrementally, one implements a compiler for a
subset of the source language in a language understood by an exist-
ing compiler (or even in machine language) and then uses this core

language to write a compiler that can translate a greater subset of the

T-DIAGRAMS are frequently employed to explain these methods, but I have always
found them more confusing than helpful and omit them here. The T encodes the
three relevant issues of a compiler: the source language to the left, the target language
to the right, and the machine the compiler runs on at the base.
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source language; this can be repeated as many times as necessary to
encompass the entire language.

One can implement a compiler for the desired source language in a
language already understood by a running compiler. Once that com-
piler has been used to generate a compiler for the new source language,
a compiler for that language can be written using the language and
compiled with this compiler to obtain a self-hosting compiler.

If an interpreter for the language exists, a self-hosting compiler can
be written immediately and run in the interpreter on its own source
code to create a compiled version of itself. Due to the comparative
slowness of interpreted code next to compiled code, it may be neces-
sary to interpret only a skeleton of the compiler and use that to com-
pile only the same skeleton. This skeleton, for example, might omit all
optimization and use only the simplest of algorithms for code gener-
ation. Once a skeleton compiler exists, it can be run on code for the
full compiler, producing a compiler capable of optimization and clever
code generation. This compiler, however, will not be as efficient as pos-
sible, since it was compiled with the skeleton compiler: this can be
resolved by having the slow-running, full compiler compile its own
source code, at which point the desired faster, full compiler will be
obtained.

CROSS-COMPILATION is a quick way to produce compilers for new
machines.* A cross-compiler is a compiler that compiles across target
machines, for example a C compiler running on a SPARC machine
but generating code runnable by a PowerPC. By cross-compiling the
compiler itself, a compiler for the new machine is readily obtained.
This allows one to leverage all the work put into creating the compiler
for the original machine.

Clearly, a variety of solutions to this problem exist, but I hope the

central idea of BOOTSTRAPPING has come through, that of using what

Cross-compilers are also essential in embedded situations, where the target does not
have the resources to run a compiler and it is impossible to develop an application
for the machine using the machine itself.
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you have now to pull yourself up to where you would like to be.
The particular approach employed depends very much on the circum-

stances and on the preferences of the compiler writers.

4.6 BIBLIOGRAPHIC NOTES

Hopcroft, Motwani, and Ullman [55] is a standard textbook covering
languages and Turing machines and touching on computational com-
plexity. Its emphasis is on the abstract machines and the languages
themselves as opposed to scanning and parsing. The classic reference
for compiler design is Aho, Sethi, Ullman, and Lam [6], known af-
fectionately as “the dragon book” for its cover art. (The color of the
dragon is sometimes used to specify the edition.) Many more recent
texts still refer the reader to it for its detailed information on scan-
ning and parsing, which is dealt with more cursorily in more modern
texts to allow more discussion of optimization. However, the dragon
books, including the 2006 edition [6], preserve the original 1977 edi-
tion’s [5] presentation of LALR parsers as the ultimate LR parser. The
dragon books present LALR parsers as an improvement on LR parsers
because they avoid the exponential space-time problem of the original
LR algorithm. However, this problem had been addressed by Pager
[96] in 1973. Pager’s method was later illustrated and explained more
clearly and briefly, though less formally, in Spector [120]. It is unfortu-
nate that the dragon books appear not to take this not exactly recent
development into account.

A good, modern, introductory textbook on compiler design is Cooper
and Torczon [31]. Muchnick [93] picks up where a course using that
book would leave off by giving more advanced information on the
basic content and covering optimization and analysis in great detail.
As one implements more optimizations in a compiler, the problem of

optimization phase ordering, mentioned in 4.3 on page 73, grows in
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importance. One cannot escape the problem even by forgoing compil-
ers to code directly in assembly, as it affects even even hand-optimized
code [54]. Kulkarni, Hines, Whalley, Hiser, Davidson, and Jones [68]
describes an interesting attack on the problem by way of genetic algo-
rithms.

Textbooks on compilers often seem to give the impression that scan-
ning and parsing are solved problems and the world has moved on.
While that might be the case for scanning, parsing is still an active
area of research. The Purdue Compiler Collection Tool Set bucked the
trend of providing LR-style parser generators in favor of developing
an LL parser generator. This parser generator is now a project in itself,
ANTLR (ANother Tool for Language Recognition) [97]. Other areas of
research are implementing practical full LR parsers (see Menhir [114]
for an example) and GLR parsers (for example, Elkhound [85]), as well
as addressing problems of development of domain-specific languages
and composable grammars; see, for example, Wyk and Schwerdfeger
[137] and Bravenboer and Visser [23] and other work by those authors.
A more thorough and up to date reference than Aho et al. [6] for pars-
ing is Grune and Jacobs [48].

Another research direction in parsing theory is that of scannerless
parsers. We have presented the lexer and parser as distinct but inter-
acting modules of a compiler with their own theoretical bases. This
division is standard in compiler design: from a software engineering
perspective, it allows for the two to be tested and debugged indepen-
dently; from a theoretical perspective, it allows research into the twin
topics of regular and context-free languages to be utilized each to its
utmost. Merging the two into a single, scannerless parser brings ad-
vantages, but it also presents problems. These are described in Visser
[133]. A specific aspect of the solution to some of these problems is the

subject of van den Brand, Scheerder, Vinju, and Visser [132]. Braven-
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boer, Eric Tanter, and Visser [24] presents an example of a successful,
practical application of scannerless parsers.

Attribute grammars augment context-free grammars with attributes
and semantic rules in order to describe the program’s semantic mean-
ing. We developed attributed trees from parse trees; we next described
how semantic rules are used to perform attribute evaluation in the con-
text of an attributed tree; finally, we discussed the problems inherent in
this theoretical framework, such as the difficulty it has handling non-
local information such as that often stored in a symbol table in ad hoc
methods of semantic analysis. There’s more to be said about attribute
grammars than this, though, and their uses extend beyond compilers.
They can be put to good use in the generation of debuggers, syntax-
aware editors, and entire interactive development environments. They
are also useful in language design, while the semantics of the language
are still changing rapidly. A good survey of attribute grammars as
they are actually used is Paakki [95], which, in addition to explaining
attribute grammars and giving examples of their use, introduces a tax-
onomy classifying the various attribute grammar paradigms that have

developed.



CONCLUSION

This part provided background information essential to understanding

the remainder of this work.

* In Chapter 2, BEGINNINGS, we introduced the basic ideas of
lambda calculus and Turing machines. These provide the funda-
mental models of computation for the functional and imperative
paradigms, respectively. This connection will be made clearer in

the following parts.

¢ In Chapter 3, CcOMPUTERS, we used Turing machines as a bridge
to modern computers. Succeeding sections described the three
major parts of a computer: processor, memory, and input-output.
Roughly, the processor is what lets a computer compute, mem-
ory provides storage, and input-output is what makes comput-
ers useful by allowing them to affect and interact with the world.
We stressed the variety of processor architectures while giving
some taste of that variety. We explained the existence of a mem-
ory hierarchy as well as the obstacle it presents to execution
speed. We gave a rough sketch of how input-output is imple-
mented in computers. We did not have much to say beyond this,
since many of the details of input-output are more pertinent to

programming languages themselves rather than their compilers.

¢ In Chapter 4, COMPILERS, we surveyed compiler architecture
and design. We introduced the three-part structure of a com-
piler and discussed each part. Along the way, we sketched the
theory that lies at the basis of each part and how it is used in

practice. We also briefly surveyed intermediate representations
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and their importance to the compiler. Lastly, we broached the
chicken-and-egg issue of developing a compiler for a new pro-
gramming language, implementing a compiler in its own source
language, and similar compiler construction problems. The im-
portant point is that compilers neither develop in a vacuum nor
spring fully-formed from the pregnant void, but evolve gradu-
ally, though this evolution may involve the seemingly contradic-
tory device of the compiler effectively “pulling itself up by its

own bootstraps.”



Part 11

IMPERATIVE LANGUAGES






OVERVIEW

The family of imperative programming languages is large. It repre-
sents the most commonly employed programming paradigm, and it
is in light of it and its accomplishments that all other language fam-
ilies are judged. Before we begin to discuss functional languages, it

behooves us to examine their less exotic imperative cousins.

DEFINING looks at what we mean by “imperative language,” discusses
how imperative languages have developed over time, highlights
central concepts of imperative programming, and mentions sev-

eral problems inherent in the paradigm.

COMPILING discusses issues particular to compiling imperative lan-

guages.

OPTIMIZING describes how optimization is performed and introduces

basic analyses and optimizations used with imperative programs.
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7.1 HISTORY AND CONCEPTS

We earlier said that Turing machines inspired the imperative paradigm.
What is paradigmatic about Turing machines? It is their sequential
operation and reliance on state in order to compute. A Turing machine
computes move by move, at each step writing to its tape, updating
its internal state, and shifting its read-write head a tape cell to the
left or right. Its behavior is time-determined: depending on how it has
modified its tape and the state it finds itself in after passing over the
cells along its computational trajectory, it makes one more move, move
after move, in sequence.

We then anchored our understanding of modern computers in Tur-
ing machines. These elaborate, complex machines grow out of this sim-
ple seed, but they have not left their roots. We find again a reliance on
state and sequence. The program counter advances cycle by cycle as
the contents of registers and memory change.

We mentioned assembly languages in passing then and described
their simple form, abbreviated mnemonics for machine instructions
and operands. The imperative language family grows out of these and
so inherits the Turing machine spirit. They have become more elab-
orate and complex over time, much as computers elaborated on the
fundamental concept of Turing machines.

The first imperative language was FORTRAN , which is short for “the
IBM Mathematical Formula Translating System.” It was developed at

IBM in the 1950s as a language for scientific computing and pioneered
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compiler design and optimization, since no-one would trouble to make
the switch from writing hand-written, hand-optimized assembly code
to FORTRAN unless it ran nearly as fast as such assembly code. The lan-
guage theory we introduced in the chapter on compilers had not yet
been developed, and ad hoc techniques were used instead. The prob-
lems encountered in inventing and applying these techniques spurred
the development

FORTRAN was a child of its time. It relied on a fixed format for code
entry that was based on the punch cards used at the time. Each line
of eighty characters was broken into fields of different, fixed widths,
such as for numeric statement labels that were used in branching
instructions, for the “continuation character” that indicated that the
line it was on continued the previous line rather than beginning a
separate statement, and for the program code itself. All of its con-
trol flow statements (other than the sequencing implied by one line
of code following another) relied on the numeric labels. An exam-
ple, peculiar to FORTRAN, is the ARITHMETIC IF STATEMENT. The
arithmetic if transferred control to one of three statement labels de-
pending on whether a provided arithmetic expression was less than,
equal to, or greater than zero: IF ((expression)) (statement labely),
(statement label,), (statement labels).

FORTRAN II was the first FORTRAN to support procedures. Proce-
dures allow algorithms to be specified in isolation from the rest of
the program and reused. Within the PROCEDURE BODY, FORMAL PA-
RAMETERS specified in the procedure’s declaration are manipulated
in place of the actual arguments that must be manipulated in the pro-
gram. The formal parameters are “dummy variables” like the x in the
mathematical function f(x) = x% and exist to give a name within the
function’s body to all values substitutable for the formal parameter.
When the procedure is called from the program, actual arguments are

supplied; these are bound to the formal parameters by their position,
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so that the first argument is referred to by the first formal parameter,
the second argument by the second formal parameter, and so forth; the
computation specified by the procedure body is carried out; and, at the
end of the procedure, control returns to the caller and continues where
it left off. This is a powerful abstraction, and the style of programming
it gives rise to is sometimes called PROCEDURAL PROGRAMMING.

FORTRAN procedures used what is known as a CALL BY REFER-
ENCE EVALUATION STRATEGY. An evaluation strategy describes the
way in which expressions are evaluated; the expressions that the vari-
ous names for evaluation strategies focus on are, conveniently enough,
functions. In call by reference evaluation, the arguments are bound to
the formal parameters in such a way that modifications to the formal
parameters affect the arguments’ values. Suppose we have defined a
function MAKE-SIX that expects a single parameter and simply sets that
parameter equal to 6. If the value of x is 5, and we call that function
with x as its argument, then, following the function call, x will have
the value 6.

FORTRAN continues to be used and updated today. It remains a
language meant for scientific computing, but now, it is trailing the in-
novations of other imperative languages. One of these innovations is
STRUCTURED PROGRAMMING, which does away with goto-based con-
trol flow in favor of STRUCTURED CONTROL FLOW. The structure is
one based on higher-level control flow constructs like logical if state-
ments that execute their body depending on the truth value of the
provided expression, various looping constructs that repeat their body
in a predictable way, and function calls. Rather than having to deduce
that one of these common patterns is being used by deciphering the
various uses of labels, it is plain; rather than having to frame these
relatively intuitive forms of control flow in terms of statement labels
and jumps, one can express these patterns directly. This addressed the

problem of “spaghetti code” with convoluted, goto-based control flow
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that made it difficult to understand and predict the operation of a pro-
gram.

Another early imperative language family was ALGOL , short for
algorithmic language. ALGOL was the product of a joint effort between
European and American computer scientists to produce a common
language for specifying algorithms. Each version is named by its debut
year, starting with ALGcoL 58. The development of ALGOL saw the
birth of BACKUS NORMAL FORM, abbreviated BNF and now read as
BACKUS-NAUR FORM, a notation for specifying grammars that has
been slightly extended and used extensively since.

There were many official, numbered ALGOL versions, and even more
extensions and variations developed in practice, and we will ambigu-
ously collapse them all into the single identifier ALGOL. ALGOL fea-
tured CALL BY VALUE, CALL BY NAME, and CALL BY REFERENCE
evaluation strategies. With call by value, the value of the argument is
provided as the value of the formal parameter, but modification of the
formal parameter affects only the parameter within the function body
and not the original argument. Call by name is similar to call by ref-
erence, except that each use of the parameter causes reevaluation of
the associated argument. If the argument is simply a value, this is no
different, but if it has side-effects, say, is a function that increments
some global counter, this will be carried out each time the value of the
parameter is used. This allowed for some confusing behavior, and call
by reference was preferred and enforced by later versions of ALGOL.

A notable descendent of ALGOL is the C programming language,
whose development began in the 70s with the UNIX OPERATING SYS-
TEM and continues today. As its development alongside an operating
system might suggest, C was intended as a SYSTEMS PROGRAMMING
LANGUAGE offering relatively detailed, low-level control of the com-
puter it is operating on. This is reflected in its use of unrestricted MEM-

ORY POINTERS which refer to addresses in the computer’s memory.
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As UNIX rose in prominence, so too did C. C is still widespread and
fairly widely used, and it functioned in some sense as a lingua franca of
computing, as the ALGOL family did before it. C’s mark on the imper-
ative language family is most notable in its visual appearance, where
semicolons are used as statement separators and curly braces ({ and })
are used to delimit blocks in place of other textual indicators such as
BEGIN and END.

Following structured programming, the next development in the
imperative family was OBJECT-ORIENTED PROGRAMMING. Object-
oriented programming introduces the concept of an 0BJECT as a higher-
level unit of abstraction than the function. An object is a bundle of
state and METHODS (functions) that operate on that state. Objects are
instances of a CLASS or type of object, by which we mean that the ob-
jects are structured as described by the class, though each might be in
a different state. Object-oriented programming entered the C family by
way of C++ and, later, Java, of which the latter has perhaps replaced
C as computing’s lingua franca. These languages also introduced pow-
erful MoDULE-like abstractions that allowed definitions to be grouped
at an even higher level into packages or namespaces. This helps to
avoid naming conflicts, which become more and more of a problem as
a program grows larger and larger and requires more and more vari-
able names, which prevents one body of code from interfering with
another and eases reuse.

Java is notable for providing GARBAGE COLLECTION, sometimes
known as AUTOMATIC MEMORY MANAGEMENT. This means that the
programmer is no longer responsible for indicating when some storage
referred to by a variable is no longer needed. Instead, the runtime
system attempts to discover when some storage is no longer reachable
or no longer needed and reclaims this by freeing up the space for use
with other variables. There is a cost associated to this at run time, since

the run time system must track this storage and reclaim it and lacks
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the knowledge of the program that the programmer has. This cost
prevented its widespread adoption prior to Java. But there is also a cost
to not providing garbage collection, since manual storage management
has proven to be a difficult and time-consuming issue that can cause
subtle problems in a program. The price is paid in development rather
than at run time.

Java is also notable as being designed to run on its own associated
platform, the Java VIRTUAL MACHINE (VM), rather than in a specific
machine environment. This enables programs written in Java to run on
any platform for which a Java virtual machine has been implemented.
This too comes at a cost: the program is interpreted by the virtual ma-
chine which then uses the underlying machine to carry out the speci-
fied operation. This can be a slow process. Innovations in interpreter
design and compilers have done much to ameliorate this, but it is still
an issue.

Thus, imperative languages developed, in a sense, as abstractions
of assembly language. They continue to rely on sequencing and state
to perform computation and explicitly describe the process of com-
putation: do this, then do that, then. ... Mathematical notation can be
used to specify formulas. Functions abstract common operations. Mod-
ules abstract over related definitions. Classes abstract over functions
(now called methods) and state and allow programs to better resem-
ble the real-life objects they are modeling. They frequently employ call
by value and call by reference evaluation strategies alongside proce-
dural and structured control abstractions. They are generally statically
scoped: the extent of a variable depends primarily on where it falls in
the textual description of a program. These scopes can, and do, nest,
both statically (if blocks within if blocks, say) and dynamically (a pro-

cedure call places one in a new scope).
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7.2 PROBLEMS

The imperative paradigm has problems dealing with architectures that
do not reflect its heritage. Its reliance on statements that execute in se-
quential order, affect the associated program state, and use that state to
determine their sequencing has serious problems dealing with con-
CURRENT EXECUTION, in which several threads of execution can be
acting simultaneously and affecting each other in nontrivial, and some-
times problematic, ways. This same reliance also limits the ways in
which imperative code can be composed and reused. Modules, classes,
procedures, and scoping in general exists in part to address this prob-
lem by partitioning the namespace, so that one block of code’s variable
global_name can differ from another’s. As more and more lines of code
are added to a program, the interaction between various side effects on
the environment and state that are implicit in different functions and
statements compounds. To sum up the imperative paradigm’s prob-
lems in a single word, the problem is with scale: growing larger, in
programs, in number of executing threads and processors, in problem
complexity, poses a serious problem to a language family with such

humble, historical origins.

7.3 BIBLIOGRAPHIC NOTES

The proceedings of the Association for Computing Machinery’s few
History of Programming Languages (HOPL) conferences published
much valuable and fascinating material on the development of pro-
gramming languages. The strongly historically rooted description of
the imperative languages reflects my own views on the subject. Much
of the material on functional languages contrasts them with imperative
languages and discusses failings of imperative languages that appear

in contrast; the problems I mention spring from this sort of compari-
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son. If one compares the many branches of the imperative family, other
problems and tradeoffs come into view, but, while interesting in them-
selves, they are not relevant here. The appendices of Scott [117] feature
an interesting family tree of the imperative languages as well as many
capsule summaries of programming languages. The book itself is a
good starting point if the diversity of programming languages catches
your interest, though, as is usual, the bulk of its focus is on imperative

languages.



COMPILING

The common overall approach to programming adopted by imperative
languages gives rise to common issues in their compilation. A few
such issues are scoping, data storage, and common data types such as

arrays.

8.1 STATIC AND DYNAMIC LINKS

Static scoping means that the variables of enclosing scopes must be
accessible from within their enclosed scopes. It also means that inner
scopes must be able to MASK or sHADOW the variables of outer scopes,
creating a variable with an identical name in an inner scope that then
makes the same-named variable in the outer scope inaccessible from
that inner scope.*

We mentioned the use of a symbol table as a form of intermediate
representation. But a single symbol table cannot cope with this nesting.
Instead, NESTED SYMBOL TABLES are used. As each block is entered, a

new symbol table is created. On leaving, the symbol table is destroyed.

Listing 8.1: Scopes and shadowing

int x = 5;
std::cout << x; // prints 5
{ /* now in brace-delimited inner scope */
int x = 6; // this x masks the outer
std::cout << x; // prints 6
} /* back in outer scope: outer x no longer masked */
std::cout << x; // prints 5

Some languages do provide a way to refer unambiguously to variables in enclosing
scopes, such as Tcl’s upvar and uplevel.
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This corresponds to the definitions of the inner scope going out of
scope.

The different blocks are connected in two ways: statically and dy-
namically. By statically, we mean lexically, in the textual representation
of the source code. By dynamically, we mean at runtime, in the sense
that the scope of a called function or other such block nests within that
of the caller, regardless of where the block is located statically. The
symbol tables are connected in two ways that reflect this distinction,
via a STATIC LINK and a DYNAMIC LINK. If a variable’s definition is
not found in the local symbol table, the static link is followed up and
that symbol table checked; this process is repeated till there is no en-
closing scope, at which point we must conclude the variable is simply
undefined. Similarly, when a function is called, its scope is dynami-
cally linked to that of its caller: at the end of the function, control will
return to the caller; exiting a function corresponds to returning along
the dynamic link.

Object-oriented programming introduces one more kind of link through
its class hierarchies. Class hierarchies allow subclasses to inherit the
definitions and so state and behavior of their ancestors. Often, this
is used to create multiple specializations of a more general class, as
might be used to treat the relationship between cars and boats with
the more general class of vehicle. The superclass link can be thought
of much like an extension of the static link to handle the class structure

of object oriented programs.

8.2 STACKS, HEAPS, AND STATIC STORAGE

Symbol tables hold symbols that allow us to access data. Where should
this data be placed? The way inner scopes nest within outer can be
seen as analogous to a piling up of definitions. Those on top mask

those below; when we leave a scope, we pop it off the stack to reveal
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the scope below. Data that comes and goes with a scope can then be
allocated on a stack. The behavior of functions and their data is similar,
as suggested by the use of the dynamic link. Data can be allocated as
part of the call stack; once we return to a lower level in the stack, that
is, once we return from the function, its local data is no longer needed.
Thus, local variables are STACK-ALLOCATED.

Data whose extent is not related to these ideas, such as that stored in
space allocated by the programmer and freed either by the program-
mer or automatically during garbage collection, cannot be allocated
on the stack. Instead, it must be stored safely away till needed later
or till we know it is no longer needed. The region where such data is
allocated is known as the HEAP, and such data is said to be HEAP-
ALLOCATED.”

Data that must persist throughout the program’s execution is called
STATIC and is typically STATICALLY ALLOCATED. Such data is allo-
cated when the program is initialized and not freed till the program
terminates.

Stack-allocated data is handily managed implicitly by the call and
return sequence and nesting of scopes, while heap-allocated data can
be more troublesome. A typical layout in memory for the stack and
heap places their starting points at opposite ends of the space available,
so that they both have the most space possible. The total stack and heap
size is limited, but neither is arbitrarily limited beyond that, as both

grow towards each other from opposite ends of the memory space.

8.3 ARRAYS

Arrays are the most common COMPOUND DATA TYPE, so called be-

cause they are a data type, array, of some other data type, the base

This heap has nothing to do with the heap data structure, which is often used to
implement priority queues.
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type. An example would be an array of integers, int[] array = {0, 1,
2, 3}

With arrays, there are questions of central interest to the program-
mer, since they are matters of syntax and convenience. How are the
elements indexed? Is the first element number 1 or number 0? Can the
lower bound be changed? What information is available at runtime
about the array, for example, its size, lower bound, or base type?

Then, there are questions that face the compiler writer but are less
directly a language user’s concern. The most obvious of these is how to
lay out a multi-dimensional array in one-dimensional memory. There
are three popular approaches, each used by a major programming lan-
guage. Their names are biased to two-dimensional arrays, but the ideas

generalize to higher-dimensional arrays.

COLUMN-MAJOR ORDER places elements in the same column in ad-

jacent memory locations. This order is used by FORTRAN.

ROW-MAJOR ORDER places elements in the same row in adjacent

memory locations. This order is used by C.

INDIRECTION VECTORS use pointers to one-dimensional arrays. This

is the approach adopted by Java.

The choice of column-major or row-major order influences which
is the best order to traverse an array: traversing a column-major ar-
ray by row requires jumping through memory, while traversing it by
column simply requires advancing steadily, bit by bit through mem-
ory. For higher dimensional arrays, row-major means the rightmost in-
dex varies fastest, while column-major means the leftmost index varies
fastest. Accessing an element is done by arithmetic, which is used to
calculate an offset from the BASE ADDRESs of the array.

An example should clarify this. Suppose we represent something’s
address by prefixing an at-sign & to it. Say we want to access the ele-

ment a[3]1[5]1[7] of a 10 x 10 x 10 row-major array of integers where
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each dimension’s lower bound is 0. We calculate its address as an offset

from &a in terms of the size of an integer s as follows:

A. Find its offset from the start of the highest dimension. Here, that
is the third dimension, and we will call the offset 03. We want to
know the start of the eighth element, which is the length of seven

integers beyond the start of this dimension. Thus, 03 =7 - s.

B. Find where that dimension begins in terms of the start of the
next lower. Here, that would be o;, and that would place us
past five runs of ten integers apiece, since each dimension is ten

integers long. Thus, 0 =5-10-s.

c. Repeat the previous step until we run out of lower dimensions.
Here, we need only repeat it once more, to find the offset to the
start of the second dimension. That is past three runs of ten runs

of ten integers apiece, thus, 07 =3-10-10-s.

D. Finally, sum all the offsets. This is the offset from the base ad-
dress. Added to the base address, it gives the address of the de-
sired element. Thus, our element is the s amount of data starting

at &a[3][5][7] = &a+ 07 + 07 + 03.

It is not hard to see how this computation can be simplified:

&a[3]5][7] = &a+ 07 + 03 +03
=&a+3-10-10-s+5-10-s+7-s

= &a+s(7+10(5+10(3)))

The computation can also be generalized to handle nonzero lower
bounds and arrays of more dimensions.

Indirection vectors are similar, but different. Every n-dimensional
array with n greater than 1 is simply an array of addresses of arrays

representing the n — 1 dimension, except the final dimension, which is
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a 1-dimensional array of the base type. To access a[31[51[7] as we did

above, we would:
A. Find the address stored at index 3 of the array of addresses.

B. Dereference that address to access the next dimension. Repeat
the previous instruction with the index at that dimension, and
so on till we arrive at the last dimension, at which point we
proceed by simple one-dimensional array arithmetic to retrieve

the value.

If we represent dereferencing by a star *, then we can write this:

/* a 1is a multidimensional array’s name x/

base = &a;

b (*base) [3];

C

(xb) [51;
value = (xc) + 7 *x sizeof(int);
// equivalently,

// value = (x(x((xbase)[3])[5])) + 7 * sizeof(int);

J

Indirection vectors replace the cost of array arithmetic with pointer
dereferencing. Rather than calculate a complicated offset, they acquire
the next needed address directly from a trivial, one-dimensional offset

of a known address.
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For further information on these topics, almost any text on compilers
will do, though only more recent texts such as Cooper and Torczon

[31] will discuss issues germane to object-oriented languages.



OPTIMIZING

Our discussion of optimization in Section 4.3, Middle End: Optimizing
the IR focused on the variety of properties of a program one might
wish to optimize and gave examples such as speed, size, and power
consumption and the problem of optimization phase ordering. Now,
we will describe how one optimizes a program’s representation, along
with some examples of common optimizations applied to imperative
programs.

Optimization comprises two closely-related tasks: analysis, which
gathers the information needed for an optimization, and application of
the optimization. Each application of an optimization changes the rep-
resentation of the program, so a single analysis is likely to be repeated
several times. Optimizations and their analyses range from being quite
generally applicable to being quite specific to the language, even to
specific uses of the language. The source code might even be writ-
ten in order to ease optimization, possibly through annotations with
no meaning in the source language but helpful to the optimizer. Pro-
gram analysis and optimization is a fruitful area of research, with new
analyses and optimizations being developed constantly and older ones
refined. The details of implementation are specific to each compiler
and its chosen intermediate representations; as such, the intermediate
representation itself contributes in important ways to optimization. In-
deed, static single assignment form was developed, and is extensively

employed, to ease optimization.*

* For more on ssa, see Section 4.2, Intermediate Representations.
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9.1 ANALYSIS

Analysis is integral to optimization. The variety of analyses are often
loosely classified based on their subject. Perhaps the broadest class
is DATA FLOW ANALYSIS. It can be distinguished from classes such
as ALIAS ANALYSIS, which deals with attempting to discover which
names in the program refer to the same data (that is, are AL1ASES for

the same data), control flow analysis, and dependence analysis.

9.1.1 Control Flow

Control flow analysis is necessary to perform almost all other anal-
yses. The aim of control flow analysis is to deduce the control flow
relationships between the elements of the intermediate representation.
In a linear IR, this makes explicit the sequential flow between adjacent
statements as well as that created by jump statements, goto statements,
and more structured control flow statements.

There are several approaches to control flow analysis varying in
their applicability, speed, and the type of information they provide.
Some methods can produce a relatively high-level structural analy-
sis of control flow that recognizes the type of control flow created by
the use of structured programming statements such as while, if-then,
if-then-else, and case. Others can do little more than recognize the
presence of some sort of loops as opposed to simple sequential control

flow.

Structural Units

It is necessary to understand the structure of the control flow graph in
order to understand the various scopes of analysis and optimization.
The fundamental element of a control flow graph, typically constitut-

ing the nodes of the graph, is the BAsiC BLOCK (BB), a maximal se-
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quence of instructions that must be executed from start to finish. This
bars the possibility of either entering or exiting from the middle of a
basic block, so that, for example, labeled statements can only begin a
basic block. Procedure calls are a matter of some delicacy, and whether
they are treated as interrupting a basic block or not depends on the pur-
pose of the control flow analysis being performed. They might even be
treated in both ways. Delayed branches also introduce problems as to
how the instructions in the delay slots should be treated; fortunately,
this issue can largely be ignored except for very low-level representa-
tions on architectures that make such delays visible.

We say a basic block with more than one predecessor in the control
flow graph is a JOIN POINT, since several flows of control come to-
gether in that block. A basic block with more than one successor is
similarly called a BRANCH POINT. A single basic block can be both a
join point and a branch point.

A slightly larger structural unit is the EXTENDED BASIC BLOCK
(EBB). Extended basic blocks comprise a rooted control flow subgraph.
Its root is a join point. An EBB is the largest connected set of basic
blocks reachable from the join point that are not themselves join points.
Thus, if control reaches any of the blocks in the EBB, it must have gone
through the root.

The procedure itself forms the next largest generally recognizable
structural unit, though this is defined not in terms of the graph but
rather by the program itself. The largest unit is the entire program. In
between extended basic blocks and an entire procedure sit regions of
various sorts, defined as suitable for different analyses and optimiza-

tions.

Scopes of Analysis and Optimization

Corresponding to these structural units are the different scopes of anal-

ysis and optimization. These names are used to describe the subgraphs
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Figure 8: Structural unit examples
(a) Basic blocks
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of the control flow graph considered during a given analysis or opti-

mization.

LOCAL SCOPE corresponds to a single basic block.

SUPERLOCAL SCOPE corresponds to a single extended basic block.
REGIONAL SCOPE corresponds to a region not otherwise specified.

GLOBAL SCOPE (also called INTRAPROCEDURAL SCOTE) corresponds

to an entire procedure.

WHOLE-PROGRAM SCOPE is unambiguous; you might sometimes see
it called INTERPROCEDURAL SCOPE as well, particularly in the
phrase “interprocedural analysis,” which describes a variety of

often rather intractable analyses.

“Global scope” might appear to be a misnomer for anything less than
the entire program, but it is generally preferred to “intraprocedural
analysis,” since that sounds altogether too much like “interprocedural
analysis.” Global analysis encompasses a procedure’s entire control
flow graph; interprocedural analysis must cope with a number of con-

trol flow graphs, one for each procedure.*

9.1.2 Data Flow

Data flow analysis, together with control flow analysis, is the bread
and butter of optimization. It can frequently be performed alongside
control flow analysis: both require similar techniques for building and
propagating information. Where control flow analysis concerns how
basic blocks are related, data flow analysis concerns how various kinds

of data are communicated along those relations.

Attempts to introduce “universal” as a synonym for “interprocedural” as “global”
is used for “intraprocedural” were unsuccessful, but the contrast between the two
names might help to remember the distinction.
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Data flow analyses are posed as data flow problems. An example is
the REACHING DEFINITIONS PROBLEM: What definitions of a vari-
able could still be in force (LI1VE) at the point of a given use of that
variable? Similar is the problem of UPWARD EXPOSED VARIABLES:
Control flow graphs are generally drawn so control flows from top to
bottom, and this question asks, what variables must have been defined
upward of a given basic block?

These two problems typify two major classes of data flow problems,
the FORWARD DATA FLOW PROBLEMS, like reaching definitions, and
the BACKWARD DATA FLOW PROBLEMS, like upward-exposed vari-
ables. These are so called because they require propagating informa-
tion either forward along the control flow graph’s edges or backwards.
A third, rarer, and more troublesome class is that of the BIDIREC-
TIONAL DATA FLOW PROBLEMS. This class is troublesome enough
that it is often either not bothered with or reformulated in terms of
the other two, as was the case for PARTIAL-REDUNDANCE ELIMINA-
TION, which seeks to discover computations of the same value that are
performed multiple times along certain paths through the control flow
graph.

Data flow analysis is well enough understood that it can be auto-
mated in good part by the appropriate tools. This understanding is
based theoretically upon LATTICES and FLOW FUNCTIONS. Lattices
are structured to correspond to the properties of the program under
analysis. Flow functions allow us to abstractly model the effect of parts
of the representation on those properties. Together, these let us ab-
stractly simulate the effects of executing the program and discover
intrinsic properties of the program, frequently independent of input
values and control flow. Data flow problems can be posed in terms
of these lattices and flow functions. Solutions to the problems become
the FIXED POINTS of properly formulated data flow equations, which

can be solved by iteration and, often, several other quicker and more
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clever methods. Solvability of such problems can be guaranteed for a
variety of flow functions.

An issue that is not dealt with directly by these abstractions is the
correctness of transformations based on these analyses. The analysis
must be performed with an eye towards the optimizing transforma-
tion that will be based on its results. We wish to be as aggressive as
possible in optimizing the program, but we cannot be so aggressive
that we do not preserve its behavior. In developing and implementing
optimizations, we walk a fine line between aggressiveness and conser-
vatism: if we are too conservative in drawing conclusions from our
analysis, we will fail to improve the program as much as possible; if
we are overly aggressive, we will be unfaithful to the original program,
and the results will be something related but different. This dilemma
has its parallel in translation: a word-for-word translation is stilted and
awkward, but without great care a more natural, fluid translation risks

departing from the meaning of the source text.

9.1.3 Dependence

Dependence analysis aims to discover computational dependences of
various sorts between the elements of the representation, often the in-
dividual statements in a low-level linear representation. It is central to
instruction scheduling and is discussed in detail in Section 4.4, Back

End: Generating Target Code.

9.1.4 Alias

Alias analysis is concerned with determining when and which differ-
ent names can refer to the same data. The way aliases can be created
and used varies greatly from language to language. Alias analysis is

often quite difficult. Making the most conservative assumptions possi-
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ble — namely that all data whose addresses have been made available
can be affected by any alias in the program — can guarantee correctness
at the expense of preventing possible optimizations. The cost of these
hyperconservative assumptions varies depending on the program. In
programs that do not make extensive use of aliases, this assumption
might not pose much of a problem. In programs that do use aliases ex-
tensively, the assumption could bar almost all optimization. Thus, alias
analysis is necessary to creating an aggressively optimizing compiler.

There are two parts to alias analysis: ALIAS GATHERING, which dis-
covers which variables are aliases and basic information about what
data is aliased, and ALIAS PROPAGATION, which propagates this in-
formation throughout the program and completes the analysis. The
propagation phase can be modeled as a data flow problem.

There are a few distinguishable types of alias information. MAY IN-
FORMATION describes what may happen but does not always happen.
This information must be accounted for and its effects allowed, but it
cannot be depended on to occur. MUST INFORMATION is information
about what must happen. This information is very useful in perform-
ing optimizations. Alias information (and the analysis that produces it)
can also be FLOW SENSITIVE and FLOW INSENSITIVE. The flow here
is control flow. Flow insensitive analysis is simpler and generally can
be performed as several local analyses that are then pieced together to
form the whole of the information. Flow sensitive analysis is more diffi-
cult, both computationally and conceptually, but also more detailed. It
requires understanding and, to some extent, simulating the program’s
control flow. The combinations of these factors — must, may, flow sensi-
tive, and flow insensitive — determine how long the analysis takes, the
usefulness of the information, and both the optimizations that can be

based on the information and the extent of those optimizations.
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9.2 OPTIMIZATION

9.2.1 Time

As discussed above, optimizations can be classified by their scope.
They can also be classified by when they are generally applied: early in
compilation, somewhere in the middle, or later. Time generally corre-
sponds to the level of abstraction of the program representation. Early
on, the representation is much closer to the source language than later,

when it generally becomes much closer to assembly language.

9.2.2  Examples

We will now give several examples of optimizations. We will name the
optimization, briefly describe it, and then give an example of some
source language code. We then demonstrate the results of the opti-
mization as transformed source code and provide a description of the

transformations performed.

COMMON SUBEXPRESSION ELIMINATION There are several vari-
eties of common subexpression elimination depending on the scope
and approach. They all have the aim of avoiding redundant compu-
tation by reusing existing values. Common subexpression elimination
can be usefully applied both early and late in compilation.

Listings 9.1 and 9.2 provide a simple example of common subex-
pression elimination. The initial assignments of both i and j require
the computation of a x b. Common subexpression elimination will fac-
tor out this computation into a temporary value so that it need only be
computed once. Notice that common subexpression elimination tends
to increase register pressure, since the values of the common subex-

pressions must now be preserved beyond their first, immediate use.
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DEAD AND USELESS CODE ELIMINATION This optimization is
easy to describe, though in practice it ends up being applied in a va-
riety of cases. It simplifies the representation, which speeds the fol-
lowing analyses and transformations. It is commonly run many times
during compilation. It aims to eliminate code that is USELEss, that
is, that computes a result no longer used, and code that is DEAD or
unreachable. Dead and useless code can be the result of textual sub-
stitution as done by the C preprocessor in expanding macros or the
result of other optimizations eliminating all uses of a definition or all
statements in a block.

The example in listings 9.3 and 9.4 on page 123 is a very artificial
example in C. Code portability is often achieved in C by writing suit-
able preprocessor macros that are then configured based on the envi-
ronment in which the code is compiled. Environment-dependent code
that cannot be dealt with abstractly through macros is included condi-
tional on other macros representing the platform. The preprocessor’s
conditional statements are normally used to selectively include code
for compilation by the compiler as opposed to the conditional state-
ments of the language. Here, we instead use the C language’s con-
ditional statements to include code. This results in dead and useless
code that would be removed by dead and useless code elimination, as

shown in the transformed code.

CODE HOISTING Code hoisting is so called because it corresponds
visually to lifting a computation up in the control flow graph, which
is usually drawn so that control flows from top to bottom. Rather than
specifying that a computation occur in all branches of an extended
basic block, we might be able to hoist the computation up to the com-
mon ancestor of all those blocks so that it is specified only once. This

reduces code size. Code hoisting is a type of CODE MOTION.
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Listing 9.1: Common subexpression elimination: Source code

int i, j;
i=a=x*xb+ 3;
while (i < 10) {

i=1+10;
}
j=axb+ i
Listing 9.2: Common subexpression elimination: Transformed code
int i, j, tl1;
tl = a x b;
i=t1+ 3;
while (i < 10) {
i=1+10;
}
j =1l + i;
J
Listing 9.3: Dead and useless code elimination: Source code
#include "location.h"
#include "transport.h"
#include "platformConfig.h"
Transport deliveryMethod;
Location from = location_getHere();
Location to = location_getThere();
deliveryMethod = transport_nextDayAir;
/* Suppose platformConfig.h declares
* SUPPORTS_WORMHOLES true,
* SUPPORTS_FTL false. x/
if (SUPPORTS_WORMHOLES) {
deliveryMethod = wormhole_open();
/* this renders the earlier definition of
* deliveryMethod useless x/
} else if (SUPPORTS_FTL) {
/* this branch can never execute, so it is dead x*/
deliveryMethod = ftl_getShip();
}
J

Listing 9.4: Dead and useless code elimination: Transformed code

#include "location.h"

#include "transport.h"

#include "platformConfig.h"
Transport deliveryMethod;

Location from = location_getHere();
Location to = location_getThere();
/* useless code eliminated x*/
deliveryMethod = wormhole_open();
/* dead code eliminated x/
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Listings 9.5 and 9.6 provide a trivial example. As with other such
examples, it is likely the programmer would perform such a painfully
obvious optimization in the source code. Nevertheless, it is instructive.
The computation of x, which occurs in all branches of the switch. . .case
statement, is hoisted from the cases to before the switch. You can
see this hoisting visually in terms of the corresponding control flow

graphs in Fig. 9.

LOOP UNSWITCHING Here, switching refers to if-then-else control
flow or, more generally, switch. . .case control flow. When this occurs
within the loop, the switching occurs with each passage through the
loop. If the condition determining which case of the switch is executed
is loop invariant, then we can move the switch to surround the loop
and then duplicate the loop within each case. Then the switch is en-
countered only once, when we select which variety of the loop to use.
This trades code size against execution speed: there are fewer branches,
so the code will run faster, but the loop body must be repeated in each
case.

In listing 9.7, we find a loop with a nested if-then-else statement.
If we assume that warnlevel remains unchanged throughout the loop,
then we would, each time we go through the loop, have to test warnlevel
in order to select the same, still appropriate branch. Listing 9.8 shows
the results of applying loop unswitching to the code in listing 9.7. The
branch is now selected prior to looping, which eliminates many tests
and jumps.

Note how loop unswitching obscures the basic intent of the code,
namely, "tell everyone on the team a certain message depending on the
current warnlevel,” and reduplicates the code governing control flow
(the for-loop header). If the programmer were to apply loop unswitch-
ing manually to the source code in this case, obscuring the code’s pur-

pose would harm its long-term maintainability, and reduplicating the
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Listing 9.5: Code hoisting: Source code

int x, vy, j;
ji=. .
switch (j) {

case 0: x = 42; y = 1; break;
case 1l: x = 42; y = 2; break;
default: x = 42; y = 3; break;
}
J
Listing 9.6: Code hoisting: Transformed code
int x, y, j;
ji=. . .
X = 42;
switch (j) {
case 0: y = 1; break;
case 1l: y = 2; break;
default: y = 3; break;
}
J

Figure 9: Code hoisting: Control flow graphs

(a) Source code (b) Transformed code

begin begin

int x, vy,
j

X = 42;

is

switch (j)

end end
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control flow code introduces the opportunity of updating it in one
branch but failing to update it it in the other. Thus, it is inadvisable
for the programmer to manually perform this optimization. Since the
execution time saved by unswitching the loop could be significant, it

is important that the compiler perform this optimization.

9.3 BIBLIOGRAPHIC NOTES

While Cooper and Torczon [31, chapters 8-10] provides an introduc-
tion to analysis and optimization, Muchnick [93] concerns itself al-
most exclusively with analysis, optimization, and the construction of a
compiler that executes these. (This chapter is heavily indebted to both
books.) It leaves untouched matters of optimizations for parallel archi-
tectures and other such optimizations needed by demanding scientific
computing programs. For discussion of those issues, it recommends
Bannerjee [14, 15, 16], Wolfe [136] and Zima and Chapman [138].

The LLVM (Low-Level Virtual Machine) project [71] is notable among
other things for its extensive use of ssA form in its compiler architec-
ture. It uses ssA as its primary representation of the program through
most of compilation.

Static analysis is valuable for much more than compile-time opti-
mization. It is necessary for development of advanced IDEs (interac-
tive development environments), source code style-checking tools, and
bug-finding tools, among other things. Static analysis and its many
uses is an active topic of research that has led to several commercial
ventures, such as Klocwork,* COVGI‘ity,T and Fortify,i as well as open-

source research projects seeing industrial use such as Findbugs [56].

* http://www.klocwork.com/
t http://www.coverity.com/
I http://www.fortifysoftware.com/
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Listing 9.7: Loop unswitching: Source code

for (Person p = team.head; p->next != NULL; p = p->next) {
if (warnlevel >= 2000) {
p.klaxon << "Warning!";
} else {
p.spywatch << "All clear.";
}

Listing 9.8: Loop unswitching: Transformed code

if (warnlevel >= 2000) {
for (Person p = team.head; p->next != NULL; p = p->next) {
p.klaxon << "Warning!";
}
} else {
for (Person p = team.head; p->next != NULL; p

1

p.spywatch << "All clear.";

p->next) {

}
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CONCLUSION

Imperative languages developed to replace assembly languages for
general programming purposes. They have dominated the program-
ming language landscape, and their long history and wide use have
made them the target of much research. They provide the conventional
backdrop against which other programming language families, such
as the functional languages discussed next, play their part. Unconven-
tional ideas are often explained in terms of concepts familiar from the
imperative paradigm. Alternative paradigms are judged in light of the
successes and failures of the imperative. Thus, in addition to technical
background, this part serves to communicate something of a common

cultural background, as well.

* In Chapter 7, DEFINING, we quickly surveyed the development
of the imperative programming paradigm through the growth of
the imperative language family, focusing on FORTRAN, ALGOL,
C, and Java as examples of goto-based, procedural, structured,
and object-oriented programming. We concluded by giving sev-

eral drawbacks of the imperative paradigm.

* In Chapter 8, COMPILING, we introduced common issues en-
countered in developing a compiler for imperative programming

languages, in particular:
- scope
- data storage

- array layout.
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e In Chapter 9, oPTIMIZING, we described the process of opti-
mization in terms of a variety of analyses and transformations
and gave examples of several common optimizations applied to

imperative programs.
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FUNCTIONAL LANGUAGES






OVERVIEW

We have discussed imperative languages at some length. Now, we

move on to functional languages.

THEORY discusses some theory basic to functional programming.

HISTORY sketches the history of the functional language family by

way of several of its defining languages.

COMPILING describes in broad terms how functional languages are

compiled.

CASE STUDY: THE GLASGOW HASKELL COMPILER addresses the ques-
tion of how programs in modern functional languages are actu-
ally compiled to run on modern computers. We answer this by
studying the Glasgow Haskell compiler, the principal compiler

for the Haskell language.
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12.1 TYPES

When we mentioned types earlier, we took for granted that the mean-
ing was clear enough based on shared experience of types in common
programming languages. Now, we wish to discuss the functional lan-
guages. Here, we cannot rely on shared experience. Functional lan-
guages have seen some use as testbeds for practical applications of de-
velopments in type theory. Modern functional languages are founded
not only on the lambda calculus, but on typed lambda calculi. But the
lambda calculus is a poor way to introduce the terminology and con-
cepts of types, and so we shall first discuss types in order to develop an
intuitive understanding of some concepts that we will later introduce
into the lambda calculus. Before we go on to discuss the languages
themselves, then, we would do well to look a bit more carefully at the
concept of type.

Types are introduced into programming languages in order to make
the language safer and easier to compile efficiently. Types make the
language safer by making it much easier for the compiler to catch non-
sensical operations, such as trying to add a string to a pointer and
store the result in a structure. If a language can guarantee that opera-
tions of one type will not be applied to operands of an incompatible
type, then we say the language is TYPE SAFE. In a type safe language,
a type inconsistency becomes a critical error. Consequently, programs,
especially large, complex programs, written in type-safe languages are

easier to debug than those written in non-type-safe languages. Types
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can also make the language easer to compile efficiently. Different types
of data can, or sometimes must, be dealt with in different ways at the
machine level. Types increase the amount of knowledge about the el-
ements of the program available to the compiler for optimization and
allow the resulting code to be specialized to the types involved.
Providing type information, however, can be burdensome on the pro-
grammer. It is desirable that the programmer need not explicitly spec-
ify the types involved in the program, but rather that the types be im-
plicit in the values used and behaviors specified. This is done through
TYPE INFERENCE. Once all types have been inferred, type checking
can proceed; once the program successfully passes type checking, the
type information can be used in optimization and code generation.
Now that we have clarified how types are used and why they matter,
it is time to be clearer about what types are. Quite simply, we can look
at a TYPE as an identified set of values. These sets can overlap or be
disjoint. The integer 6 falls into both the integer subranges 1..16 and
5..15. But the set of all integers and the set of all strings is distinct;
even the integer 5 and the string “5” containing the character 5 can
be made readily distinguishable by introducing the lexical convention
of writing strings within quotation marks. Sets can also be related by
inclusion. All integers and reals are also numbers at the same time.
From this, we can see that a given value can belong to a set of types. To
express that a given value is of a given type, we write (value) : (Type).
We can also construct types from other types. With —, we can build
the type of functions from one type to another from the types of its do-
main and codomain. The integer successor function succ, defined such
that succ x : Int = x4 1, that is, it takes an integer as input and out-
puts that integer incremented by 1, would then have type Int — Int.
PRODUCT TYPES are tuples with the various components of the tuple
capable of taking on values of various types. To represent a specific

tuple, we write its elements as a comma-separated list within paren-
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theses. For example, (1, 'A’) is a specific tuple to which we could
assign the type Int x Char. If we allow the components of the tuple to
be referenced by name rather than ordinal position, we find that we
have reinvented structures (in the terminology of C) or records (in the
terminology of Pascal).

The TYPE sYSTEM of a language is often specified in this way, by
enumerating the BASE TYPES and then describing how those types
can be combined to form other types. In this way, the type system
itself represents a small language of types with its own syntactic and
lexical rules and its own semantic content embedded within the larger

context of the programming language itself.

12.1.1  Polymorphism

Parametric and Ad Hoc

POLYMORPHISM is the property of being of many types. It stands op-
posed to MONOMORPHISM, the property of being of a single type.
Both concepts are broadly applicable to the typed elements of pro-
gramming languages — variables, functions, operators, sometimes even
modules — and, by extension, to programming languages themselves:
a polymorphic language exhibits polymorphism wherever possible,
an almost polymorphic language has fewer polymorphic features, a
nearly monomorphic language has virtually none, and a monomor-
phic language has purely monomorphic features.

Traditionally, polymorphism is informally divided into two kinds
based on the polymorphism exhibited by a function: PARAMETRIC
POLYMORPHISM, where the function behaves uniformly across all types,
and AD HOC POLYMORPHISM, where the behavior of the function is
specified separately for different types.

In parametric polymorphism, the parametric type of the function is

best expressed by introducing a TYPE VARIABLE. For example, if we
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use the notation [(fype)] to represent a list of the given type, then a
generic length function parameterized on the type of the list would
have type Va.[a] — Int.* This expresses that length has type “function
from list of type o to Int for all types « (Voo).” It is possible to define
such a function because of the common structure of all types of lists.
This is not unusual: parametric polymorphism is frequently achieved
by exploiting some common property of the types involved.

Ad hoc polymorphism, on the other hand, requires separate defi-
nitions for all types involved. The addition operator + is frequently
ad hoc polymorphic. When given two integers, it returns an integer;
when given two real numbers, it returns a real number; in some lan-
guages, when given two strings, it returns their concatenation, so that
"to" + "day" returns "today". It is the nature of ad hoc polymorphism
that the function will not be defined for all possible types and will
not be uniformly defined even for those types to which it can be ap-
plied, as in the dual uses of + for both numerical addition and string
concatenation.

It is, in fact, possible to regard ad hoc polymorphism as monomor-
phism together with the OVERLOADING of function names. From this
point of view, + is not a single function applicable to two values both
either integers, reals, or strings, but is in fact three different monomor-
phic functions that share a single name. By examining the types of the
supplied arguments, the overloading can be resolved, so that, for ex-
ample, 1 + 2 can be turned into a call to addInt and 1.0 + 2.0 to a call
to addReal, while "to" + "day" can be turned into a call of concatString.

Matters become more confused when we introduce COERCION, the
implicit forcing of a value from one type into another. This is common
with numeric arguments: if a function of type Real — Real is applied
to an Int, the Int value might be coerced to a value of type Real, so

that floor 4 becomes floor (toReal 4), as if the programmer had writ-

In fact, we can view the square bracket notation [T] for a list of type T as a syntactic
convenience for expressing the application of the parametric type constructor Listx
to the type T.
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Table 1: Ad hoc polymorphism as overloading

OVERLOADED CALL RESOLVED TO
1+2 addInt 1 2
1.0 + 2.0 addReal 1 2
"to" + "day" concatString "to" "day"

ten floor 4.0. With coercion and overloading in force, what happens
when 1 + 2.0 is encountered? Would it be as if the programmer had
instead written addIntReal 1 2.0, an addition function expecting an
integer and a real as its two inputs, or would the integer be coerced
so that addReal could be used? Does addInt even exist, or are integers

always coerced to be of type Real before invoking addReal?*

Subtype

SUBTYPE POLYMORPHISM is a restricted kind of parametric polymor-
phism in which the universal quantification of the type variable is re-
stricted to the universe of those types that are subtypes of some other
type. For example, a parametrically polymorphic function for sorting
lists relies on the fact that the type of the lists is ordered in some way.
Thus, what is desired is to express that sort is a function from lists of
some ordered type to lists of the same ordered type, which is to say
that it is a function from lists of all types where the type is ordered
to lists of the same type. If we introduce Order as the type of all or-
dered types and write A C B to express that A is a subtype of B, then
we can assign sort the type Voo C Order.[a] — [a]. This combination
of universal quantification and subtyping is referred to as BOUNDED

UNIVERSAL QUANTIFICATION.

* We owe this example to Cardelli and Wegner [29, p. 476].
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12.2 LAMBDA CALCULUS

In Chapter 2, BEGINNINGS, we briefly sketched the lambda calculus.
Now, we shall take the time to do it justice. The fundamentals of the
lambda calculus are simple, unassuming, and somewhat unintuitive.
By extending the lambda calculus, we can make it more “natural” for
reasoning about and even doing programming, but this comes at the
cost of reducing its power. It is, however, partly this reduction in power
that makes these extensions so appealing.

The rest of this chapter assumes you are familiar with the first-order
predicate calculus, in particular the treatment of quantifiers and free
and bound variables. If you are not, some of the finer details of the
presentation will elude you, but you should still come away with an

intuitive understanding of many of the concepts of this chapter.

12.2.1 Pure Untyped Lambda Calculus

Pure untyped lambda calculus is the original form of the lambda calcu-
lus. When someone speaks of “the lambda calculus” without qualifica-
tion, this is what is meant. Its purity is due to its conceptual simplicity
and elegance. We call it untyped because it makes no distinction be-
tween types: everything is of the same type.

The building blocks of the lambda calculus are LAMBDA TERMS.
We will call the set of all lambda terms A. A is readily defined using a

context-free grammar:

A—V|P|B
Vov|V
P— (AA)

B— (AVA)
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Let us go through this, line by line, to ensure we understand it. The

first production

A—V|P|B

says that we build terms in A using three different rules, V, P, and B.

If we peek ahead at the productions for P and B, we can see that these
depend on A. Thus, the first rule, V, is critical. It generates the most
basic lambda terms: vARTABLES. The essential properties of variables

are:
A. They have no substructure: they are AToMIC.
B. Each variable is distinguishable from each other.

The first property is plain from the definition. The second property
becomes clear once we write out the terms that V produces. These are
none other than the infinite set {v, v/, v/, ...}, namely, an infinite set of
variables, each built from the same basic symbol (v) by the addition of
more and more primes ().

Now that we have some terms in A, we are free to describe how
to form new lambda terms from other lambda terms. That is what
the next two rules do. Each describes one way to generate, given two
lambda terms, one more lambda term.

The first way is to juxtapose two terms and enclose the result in

parentheses. This is described in the context free grammar as

P— (AA)

and is known as APPLICATION. If M and N are lambda terms, then

an application of M to N looks like (M N).
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The second way is to follow a A with a variable and another term
and enclose the whole in parentheses. The grammatical production

corresponding to this is

B— (A\VA)

and is known as ABSTRACTION. If M is a term, then (Av M) is an ex-
ample of an abstraction. We shall call the variable v in such a term the
VARIABLE OF ABSTRACTION and the term M the abstractionbody.
We will sometimes adopt the point of view of constructing this term
from M and v. In that case, we say that we are “abstracting the variable
v over the term M.”

As it stands, the readability of this notation degrades rapidly as
lambda terms become more complex. The number of parentheses grows
rapidly, and it becomes difficult to tell which variables are identical
and which different as the number of primes in use grows. Thus, we

introduce some conventions:

* Lowercase letters (x, y, z, and so forth) represent atomic vari-

ables.

¢ Capital letters (M, N, and the like) represent arbitrary lambda

terms.

¢ Application is considered to associate to the left. This allows us
to omit the parentheses introduced by abstraction except when
we must override this rule for a specific term. Thus, MNOP

should be read as (((M N) O) P).

¢ Abstraction is considered to associate to the right. This allows
us to omit many of the parentheses introduced by abstraction.

Thus, Ax Ay Az M should be read as (Ax (Ay (Az M))).

* The variable of abstraction will be separated from the abstraction

body by a dot, so that we write Ax.M instead of Ax M.
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Table 2: Notational conventions

TYPE OF TERM BECOMES ORIGINALLY
Variables XY, ... v, Vv,V

Terms M, N, ... M,N,...e¢ A

Application MNOP ((MN)O)P)

Abstraction AxAyAzM  (Av (AW (AW M))) where M € A

These conventions are summarized in Table 2 on p. 143

We shall write M = N to state that M and N are syntactically equiv-
alent. Intuitively, when we say that they are syntactically equivalent,
we mean that they were “built” the same way and, though they might
use different variable names, they can be considered to be the “same
term in a different guise.” For example, thanks to the infinity of basic
variables, we can readily construct an infinity of syntactically equiva-
lent lambda terms by picking a variable, picking another variable and

applying the first to the second, then abstracting over the second:

1. Pick a variable.

=
Il
<
Il
N
Il

2. Pick another.

<
Il
N
If
2
If

3. Apply the first to the second.

XYy=yz=zw=...

4. Abstract over the second.

AY.Xxy = Az.yz = Aw.zw = ...
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At each step, all the terms listed are syntactically equivalent. We claim
that this is justified because all these terms behave the same way, as
we shall see quite soon. This makes the notion of syntactic equivalence
a powerful and useful one. But this concept is more sophisticated than
it might at first sound, and there are some pitfalls to watch out for in
defining and using it, which we shall come to shortly.

There is one more ingredient of the pure untyped lambda calculus.
So far, we have established a static universe of lambda terms. We can
conceive of larger and larger terms, but we cannot simplify them or do
anything beyond list them. The missing spark that puts these terms in
motion and enables computation is called 3-REDUCTION. 3-reduction
resembles the application of grammatical productions in context-free
grammars, and the notation is similar, though both the behavior and
notation are slightly and significantly different.

We begin by defining SINGLE-STEP 3-REDUCTION, written —pg.
This relates lambda terms to lambda terms; specifically, it says that we
can replace the application of an abstraction term to another term with
the term formed from the abstraction body by substituting the other

term for the variable of abstraction wherever it occurs in the body:
(Ax.M)N —pg M [x := N]

We can also describe how p-reduction behaves with other sorts of

terms:

¢ (-reduction is allowed in either half of an application.

M —pg M/’ M —p3 M/’
MN —g M'N NM —pg NM/

¢ B-reduction is allowed within an abstraction.

M —g M/
Ax.M —g Ax.M/
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(upper statements)

The notation (lower statements)

means that, if we know the upper state-
ments to be true, then the lower statements must also be true. The
horizontal line between the two levels can be read “implies.”

We can similarly define MANY-STEP -REDUCTION, —pg: M —
N, where N is not necessarily distinct from M, if there is some chain
of zero or more B-reductions beginning with M and terminating with
N, thatis, M — M’ —p -+ —p N.* Unlike single-step 3-reduction,
which only relates different terms, many-step 3-reduction also relates

a term to itself: M — g M always.

[-Reduction and the Perils of Names

What is going on here? We can think of it this way: abstraction binds
its variable. Once we have abstracted a term over a given variable, we
cannot do so again. The variable is no longer free. When we apply an
abstracted term to another term, 3-reduction simultaneously performs
the binding of the variable to the other term and substitutes that term
for the bound variable throughout the abstraction body. Now that its
purpose has been fulfilled and the abstraction made concrete, the ab-
straction disappears. An example will make this clearer. Take Ay.xy.

Applying it to some lambda term, M, and 3-reducing it gives:

(Ayxy)M —p xy [y := M] =xM

But here there be dragons. This is where the convenient identifica-
tion of syntactically equivalent terms returns with a vengeance. Sup-

pose we take the doubly-abstracted term Ax.Ay.xy and apply it to the

Note that we are using a two-headed arrow — here instead of the starred arrow
= that we used for the similar concept of derivation in multiple steps with context-
free grammars. As with derivation, where a subscript lm or rm indicated whether
leftmost or rightmost derivation was used, a subscript (3 here indicates that 3-reduc-
tion was employed.
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seemingly innocent term wyz. Let us also apply it to the syntactically

equivalent term tuv. What happens?

(Ax.Ay.xy)(wyz) —g Ay.xy [x := wyz] = Ay.wyzy

(AxAy.xy) (tuv) —p Ay.xy [x := tuv] = Ay.tuvy

But, should we apply this to yet another term, say s, something unex-

pected occurs:

(Ay.wyzy)s —p wyzy [y = s] = wszs

(Ay.tuvy)s —p tuvy [y = s] = tuvs

The results are obviously no longer syntactically equivalent!

This problem should be familiar to anyone acquainted with the first-
order predicate calculus. The abstraction symbol A in the lambda cal-
culus behaves exactly the same as do the quantifiers 3 and V in that
both bind their associated variable in the body of the term that we say
is abstracted over in the lambda calculus and quantified in the first-
order predicate calculus. The problem is one of VARIABLE CAPTURE:
we substituted wyz, which has as its free variables {w, y, z}, into a term
in which y was bound, thus incidentally binding the y of wyz. When
we substituted the syntactically equivalent tuv, however, all three vari-
ables remained free in the result. Thus, naive (3-reduction does not
necessarily preserve syntactic equivalence, contrary to our intent in es-
tablishing that equivalence. The only way to ensure that syntactically
equivalent terms produce equivalent results is to be very careful to
avoid variable capture. This is more difficult to fully specify than it
sounds, and we refer you to any text on the first-order predicate calcu-
lus for the details. For the purposes of this example, it suffices that we
always rename bound variables to some variable that does not occur
free in the term about to be substituted. Here, that would mean renam-

ing the bound variable y to some variable other than those of wyz, say
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v. If we perform this renaming and then repeat our experiment, we get

the appropriate results:

(Ax.Ay.xy)(wyz) = (AxAv.xv)(wyz) (renaming y to v)

(AxAv.xv) (wyz) —g Av.xv [x := wyz] = Avowyzv  (first application)

(Av.awyzv)s —p wyzv [v := s] =wyzs (second application)

wyzs = tuvs  (the results)

As you can see, the result is now syntactically equivalent to that reached

when we use tuv instead of wyz.

«-Reduction

There are two ways around the variable capture problem. One is to
simply assume that all this renaming takes place automatically and
get on with the theory. This is very convenient if all you are inter-
ested in is developing the theory associated with the lambda calculus
and is a favorite choice of theoreticians. The other option is to formal-
ize this renaming process by introducing another type of reduction,
®-REDUCTION, and modify the rules surrounding f3-reduction to ex-
plicitly forbid its use where variable capture would occur, thus forcing
the invocation of a-reduction before -reduction can continue. This is
somewhat messier, but it better reflects what must occur in a practical
implementation of the lambda calculus. While waving our hands and
saying that we identify syntactically equivalent terms and all renaming
occurs as necessary for things to come out as desired in the end works
fine on paper and fine with humans, we must be a bit more explicit if
we are to successfully implement {3-reduction in a compiler.

Doing so gets even messier. We must continually come up with
unique names, make repeated textual substitutions, and keep check-
ing to ensure we’re not about to capture a variable. But this mess was

foisted upon us by our choice of variables. We have already made clear
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by our treatment of these variables that their names serve as nothing
more than placeholders. They are just ways for the abstraction to point
down into the term and indicate at which points we should make the
substitutions called for by B-reduction. What if, instead, we reversed

the relationship between the abstraction and its variable?

De Bruijn Indices

The central insight of DE BRUIJN INDICES is to eliminate the use of
corresponding variable names in the abstraction in favor of numbers
“pointing” to the appropriate lambda. Free variables are considered
to point to lambdas that have yet to be introduced. Thus, instead
of writing Ax.xy, we would write A.12, since the x in the former no-
tation is bound by the first enclosing A, and 2 is the first number
greater than the number of enclosing lambdas. The more complex term
Ax.(Ay.xy)(Az.Ay.xyz) would become A.(A.21)(A.A.321).

This demonstrates that we are not simply renaming variables-as-let-
ters to variables-as-numbers. Instead, we are using two closely-related
notions to assign the numbers: the level and depth of a given variable
occurrence. To determine a variable occurrence’s LEVEL, we think of
starting from the outside of the expression, at level 1, and descending
through it to the occurrence. Each time we enter the scope of another
lambda along the way, we drop down another level in the term, from
level 1 to level 2 and so on. We ultimately replace the bound variable
with its DEPTH. The depth is how many levels above the current level
of nesting the corresponding binding A is located. If the occurrence and
its binder are at the same level, we consider the occurrence’s depth to
be 1. Each level we must ascend from the variable after that to reach
the binder adds one to the depth. We conceive of the free variables
as sitting one above the other over the outermost lambda of the term,

so that we must ascend past the top level in counting out their depth.
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We can thus readily identify free variables, since their depth is greater
than their level.

Take the xs in the last example, which became respectively 2 and 3.
Let us visually display the level of an term by dropping down a line on
the page; then the conversion between variable names and de Bruijn

indices becomes easier to see:

Table 3: Converting to de Bruijn indices

LEVEL VARIABLE NAMES DE BRUIJN INDICES
1 AX. A
2 (Ayxy)  (Az. (A21) (A
3 Ay.xyz) A.321)

This conversion can be performed algorithmically by keeping track
of which variable names were bound at which level of nesting. We can
also readily convert from de Bruijn indices back to variable names. This
allows for the entry and display of lambda terms using variable names
while reduction proceeds in terms of de Bruijn indices. Since de Bruijn
indices give a unique representation for each syntactically equivalent
lambda term, they sidestep the problems with variable binding and

the like that we encountered earlier.*

Currying

But variable names are more convenient for humans both to write and
read,” and so we return to using the more conventional notation. We

can even do a bit more to increase the readability of our lambda terms.

You might have noticed that, since the indices do depend on the level of nesting,
they must be adjusted when substitution occurs under abstraction. But this is only
a slight problem compared to the mess brought on by names, and it can be readily
and efficiently dealt with.

De Bruijn suffered no confusion on this count: he intended his namefree notation
to be “easy to handle in a metalingual discussion” and “easy for the computer and
for the computer programmer” and expressly not for humans to read and write [38,
pp- 381-82].
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We have already eliminated excess parentheses: let us now eliminate
excess lambdas.

Consider the lambda term Ax.(Ay.(xy)). According to our conven-
tions, abstraction associates to the right, and so this can be unambigu-
ously written as Ax.Ay.xy. But, look again: the distinction between the
variable bound by abstraction and the term within which it is bound is
clear, since each abstracted term has the form A(variable).(term). When
we come across nested abstraction, as above, it is clear that those vari-
ables closer to the nested term but left of a dot are the result of abstrac-
tion at a deeper level of nesting. So let us write, instead of Ax.Ay.xy,
rather Axy.xy. This applies wherever we would not require that paren-
theses intervene between nested lambdas due to convention. Thus, we
could rewrite Ax.(Ay.xy)(Az.Ay.xyz) as Ax.(Ay.xy)(Azy.xyz).

Notice now how a lambda term such as Axy.xy resembles a function
of multiple arguments. If we apply it to two terms in succession, then
it eventually -reduces precisely as if we had supplied two arguments
to a binary function: (Axy.xy)MN -z MN. But, what happens if we
apply it to a single term? Well, (Axy.xy)M —pg Ay.My, that is, we get
back a term abstracted over y. It is as if, on supplying only one argu-
ment to an n-ary function, we got back a function of arity n — 1. When
we apply this term to, say, N, we arrive at MN yet again, precisely as if
we had immediately supplied both “arguments” to the original term.

This is not mere coincidence. We can, in fact, represent all n-ary
functions as compositions of n unary functions. Each such function
simply returns a function expecting the next argument of the original,
n-ary function. This form of an n-ary function is known as its cCUR-
RIED form, and the process of transforming an uncurried function into

a curried function is called CURRYING.*

The name is a reference to the logician Haskell B. Curry, though the idea appears to
be due to Moses Schonfinkel.
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From Reduction to Conversion

Let us now step back a ways to where we had just defined B-reduc-
tion. B-reduction is a one-way process: it can never make a term more
complicated than it was before, though we cannot go all the way to
claiming that p-reduction always results in a less complicated term.
For example, (Ax.xx)(Ax.xx) always and only (-reduces to itself and
thus becomes neither more nor less complicated: (Ax.xx])(Ax.xx) —g
Ax.xx [x = xx] = (Ax.xx) (Ax.xx) —pg - --.

But B-reduction does relate terms: one term is related to another if it
can eventually -reduce to that term. In some sense, all terms that are
the result of 3-reduction of some other term are related in that very
way. We thus name this relation by saying that such terms are 3-con-
VERTIBLE, so that if M —g N, or N =g M, or L -»g M and L —g N,
or M —g Pand N —p P, then M and N (and additionally L and P, if
such is the case) are -convertible.* This is illustrated in Fig. 10, p. 152.
We notate this relation with a subscripted equals sign: M =g N. Note
that, as a consequence of the definition of 3-convertibility, M =g M
for all lambda terms M.

(Now that we have introduced p-conversion, it is time to emend our
earlier comments on a-reduction. What we have called a-reduction
is more commonly, and more properly, called x-conversion, since the
relation between names is inherently bidirectional: x converts to y as

readily as y converts to x.)

THE CHURCH-ROSSER THEOREM An important property of the
lambda calculus is related to this. It is known as the CHURCH-ROSSER
THEOREM, and it says that the lambda calculus together with — g has

two properties.

To be more exact, [3-conversion is the equivalence relation generated by many-step
3-reduction.
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Figure 10: 3-conversion
Letters represent lambda terms. A directed arrow M — N means
that M B-reduces to N in some number of steps, that is, M —g N.

FROM THIS. .. WE DEDUCE THIS.
M——N M=g N
M= L=p N

M/L\N
N

M/L\N
N

M =g P=g N

L= M= N=P
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e Firstly, it says that if any lambda term can be reduced in one
or more steps to two different lambda terms, then it is possible
to reduce each of those lambda terms in some number of steps
to the same term. More symbolically, this can be put as follows:
if M —-g My and M —pg My, then there exists an M3 such
that My —g M3 and M, —pg Mj3. What this means graphi-
cally is that, given the figure from the second row of the table in
Fig. 10 (p. 152), we can infer the existence of the term P in the

the last row of that table.

® Secondly, it states that if two terms M and N are [3-converti-
ble into each other, then there is some other common term P
to which the first two can both be reduced. This is to say that,
if M =g N, then we can find some P such that M —g P and

N — g P as well.

The first of these properties is known as the CHURCH-ROSSER PROP-

ERTY. The second property does not have a name of its own. Since the
Church-Rosser theorem is so important, we will sketch a proof that it
holds for the pure untyped lambda calculus. We defer a discussion of
the theorem’s implications for the lambda calculus till after we have
introduced the idea of a normal form.

There are numerous proofs of the Church—Rosser theorem. The one
sketched here is due to Tait and Martin-Lof by way of Barendregt.”
After proving a set of lemmas, the Church—Rosser theorem becomes a
simple corollary.

We begin by defining the DTAMOND PROPERTY. A binary relation —
on lambda terms satisfies the diamond property if for all lambda
terms M, M7, and M;, such that M — M; and M »— My, there
also exists a term M3 such that both My — M3 and M; — M3. In

a reduction diagram, the term M3 appears to complete the diamond

* See Barendregt [17, §3.2].
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Figure 11: The diamond property
The binary relation — satisfies the diamond property if, for every
three terms M, M, and M5 such that M — M; and M — My,
there exists some fourth term M3 such that M; — M3 and
M; - Ms. In this diagram, solid arrows indicate assumed rela-
tions, while dashed arrows indicate inferred relations.

M

begun by M ~— M7 and M — M;; this is illustrated by Fig. 11 on
page 154.

From this definition, it is clear that, if we can prove that — p satisfies
the diamond property, then we have proved that — g has the Church-
Rosser property. The first lemma shows that, if a binary relation — on
a set (such as B-reduction —p is on the set of lambda terms) satisfies
the diamond property, then so too does its transitive closure »—*. This
is suggested by the diagram of Fig. 12 on page 155.

This lemma is not quite what we need. Single-step 3-reduction —g
is not reflexive, but many-step 3-reduction is. Many-step 3-reduction —g
is in fact the reflexive transitive closure of —g. The solution to this mis-
match is to define a reflexive binary relation on lambda terms similar
to —p such that many-step 3-reduction is this new relation’s transitive
closure. Once we prove that this new relation has the diamond prop-
erty, we have proven that its transitive closure — 3 has the Church-
Rosser property.

Once we have that many-step 3-reduction — g satisfies the diamond
property, it becomes simple to prove that 3-convertible terms can be 3-
reduced to a common term (the second property specified ): The result

follows readily from the definition of =g.
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Figure 12: Transitive diamonds
No matter how many — steps —* might put My and M, away
from M, repeated application of the diamond property of ~— lets
us show that its transitive closure ~—* also satisfies the diamond
property: there is always some M3 such that both M; —* M3 and
My —* M.

Normal Forms

Now that we have defined lambda terms and p-reduction, we can give
a normal form for lambda terms. This is important if we are to explain
the impact of the Church-Rosser theorem. A lambda term is said to be
in NORMAL FORM if it cannot be further (3-reduced, that is to say, the
lambda term M is in normal form if there is no N such that M —g N.

Not all terms have normal forms. The lambda term (Ax.xx)(Ax.xx),
sometimes called ), has no normal form, since it reduces always and
only to itself. Some terms do have normal forms, but it is possible
to B-reduce the term an arbitrary number of times without reaching
this form. What this means practically that it is important to select the
right REDUCIBLE EXPRESSION (REDEX) to (3-reduce, otherwise one
might continue (3-reducing without ever terminating in the normal
form. It is easy to produce examples of such terms by throwing Q
into the mix: (Axy.y)Qz has as its normal form z, but of course one
could repeatedly select Q for reduction and thereby never realize this.

Terms that always reduce to normal form within a finite number of f3-
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reductions, regardless of the reduction strategy employed, are called
STRONGLY NORMALIZING.

Now that the concepts of normal forms and strongly normalizing
terms is clear, we can explicate the Church—Rosser theorem. Altogether,
it means that, if a term has a normal form, then regardless of the re-
duction steps we use to reach that form, it will always be possible from
anywhere along the way to reach the normal form: there’s no way we
can misstep and be kept from ever reaching the normal form short
of intentionally, repeatedly making the wrong choice of expression to
reduce. If the term is strongly normalizing, we can go one better and
state that the reduction steps we use to reach its normal form are com-
pletely irrelevant, as all chains of reductions will eventually terminate
in that normal form. This also shows that the normal form is unique,
for if N1 and N, were two distinct normal forms of a given term, then
they would have to share a common term N3 to which they could both

be B-reduced.

Recursion and Y

The pure, untyped lambda calculus is Turing complete. An important
part of achieving this degree of expressive power is the ability to make
recursive definitions using the lambda calculus. The way to do so is
surprisingly succinct. One common means is what is known as the
PARADOXICAL COMBINATOR, universally designated by Y. Here is

its definition:

Y = Af.(Ax.f(xx)) (Ax.f(xx))
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It is also known as the FIXED-POINT COMBINATOR, since for every F,

we have that F(YF) =g YF.* Let us see how exactly this works:

YF = (M. (A (xx)) (W (xx)) ) F
—p (MCF(xx)) (A.F(xx))
—p F((WF(xx)) (Ax.F(xx)))
—p F((AMF.(Ax.F(xx)) (Ax.F(xx)) ) F)

= F(YF)

At each step, we have used color to indicate the terms that are involved
in producing the next step. We have indicated at each step whether
syntactic equivalence, -reduction, or full-fledged (3-conversion was
employed. As you can see, we begin by using simple 3-reduction. The
breakthrough that permits us to arrive at the desired form is replacing
the two instances of F in the inner term ((---F---)(---F---)) by the
application of Af.(---f---)(---f---)to F.

If you look at the steps leading up to that abstraction, you can see

how Y leads to recursion. Let us carry this process out a bit further:

YF = (M. (A (xx)) (. (xx)) ) F
—p (AF(xx))(AX.F(xx))
—p FOWF(xx)) (A.F(xx)
—p FIF(((MWF (o) (AF(xx)))

—p F(F(F(((Ax.F(xx)) (Ax.F(xx)))))

As you can see quite plainly, YF leads to repeated self-application of F.

This iteration of F is how it produces a fixed point.

Y is not unique in producing fixed points. Turing’s fixed point operator @ =
(Aab.b(aab))(Aab.b(aab)) will do just as well.



THEORY

A Brief Word on Reduction Strategies

Before we move on to extend the lambda calculus with some concepts
a bit more elaborate and convenient than the low-level but elegant
pure, untyped lambda calculus, it behooves us to put in a brief word
about reduction strategies.

In the context of the lambda calculus, we call them reduction strate-
gies. In the context of programming languages in general, we use the
phrase ORDER OF EVALUATION. They both come down to the same
thing: where do we want to focus our efforts? And, perhaps more im-
portantly, where should we focus our efforts?

The choices we make in terms of lambda calculus reduction strategy
have equivalents in terms of order of evaluation of functions and their
arguments. The fundamental question is this: should we evaluate the
arguments before passing them on to the function, or should we call
the function and just point it at its arguments so it has access to them
and their values as needed?

If we first deal with the arguments and only then with the func-
tion as a whole, then we are employing a CALL-BY-VALUE evaluation
strategy, so called because the function call takes place with the values
of the arguments provided to the function. The arguments are evalu-
ated, and the resulting value is bound to the formal parameters of the
function.

If we instead begin by evaluating the body of the function itself and
only evaluate the arguments as necessary, we are pursuing a CALL-
BY-NAME evaluation strategy. Call-by-name gets its name from the
way that the formal parameters are bound only to the names of the
actual arguments. It is only when the value of one of the arguments
is required to proceed with evaluating the function’s body that the
argument is evaluated.

The lambda calculus equivalent of call-by-value is known as the Ap-

PLICATIVE ORDER reduction strategy. We can describe the applicative



12.2 LAMBDA CALCULUS

order strategy quite simply: reduction is first performed in the term to
which the abstraction is being applied. Only when we have exhausted
this possibility do we perform the application.

If we strengthen this preference into a hard and fast rule that no f3-
reduction is to be performed under an abstraction, then we can define

an alternative normal form, known as WEAK NORMAL FORM:
e Variables are defined to be in weak normal form.

® An application MN is in weak normal form if and only if both

M and N are in weak normal form.
e An abstraction Ax.M is in weak normal form.

It is in the treatment of abstractions that weak normal form differs
from normal form: weak normal form considers all abstractions Ax.M
to already be in weak normal form, while normal form requires that
the term M being abstracted over also be in normal form.

The lambda calculus equivalent of call-by-name, on the other hand,
is known as the NORMAL ORDER reduction strategy and corresponds
to always select the leftmost—outermost reducible expression for reduc-
tion. Normal order is so called because, if the term has a normal form,
we can always reduce it to normal form by employing the normal or-
der reduction strategy. The same cannot be said for applicative order,
which can fail to reduce a term to normal form even when one exists.
Again, the O term makes it easy to give an example. Something as
simple as (Axy.y)Qz suffices. Under normal order evaluation, we first
B-reduce (Axy.y)Q —p (Ay.y) and then apply the result to z, giving
the normal form z. With applicative order evaluation, however, we be-
gin by B-reducing the first argument, QO — and that is as close as we

shall ever get to the normal form z, since () has no normal form.
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Strictness

If a computation never terminates, as with the attempt to (3-reduce
Q to normal form, then we say that it DIVERGES. An important con-
cept for functions is that of STRICTNESS. We say a function is strict
in a given parameter if the evaluation of the function itself diverges
whenever the evaluation of the parameter diverges. The function Axy.y
given above is strict only in its second argument, y, since we can evalu-
ate the function even when a divergent term is substituted for x, as re-
cently demonstrated. A function that is strict in all arguments is called
a STRICT FUNCTION. The function Ax.x can readily be seen as strict,

since this function is simply the identity function.

n-Conversion

Strictness is important to understanding the appropriateness of a dif-
ferent sort of convertibility relationship between terms. This type of
conversion expresses the equivalence of a function expecting some
number of arguments and a function that “wraps” that function and
provides it with those arguments. We call two such expressions M and

N 1-CONVERTIBLE, written M =, N, and we define n-conversion as

M.Fx=qF, x¢&IV(F).

The last part, x ¢ FV(F), should be read as “where x is not among the
free variables of F” and serves to exclude abstraction over variables
that would capture a free variable in F from being defined as 1-con-
vertible with F.*

n-conversion is useful because it identifies a host of identically-be-
having terms. We can produce an infinite number, even when we iden-

tify a-convertible expressions, starting with something as simple as

If you are familiar with the concept of extensional equality, you should have no trouble
remembering the definition of n-conversion if you think of it as “n for extensional.”
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the identity Ax.x. All we need do is repeatedly abstract this term with

respect to x. This gives rise to the sequence I of terms

1 = Axx
I = Ax.(Ax.x)x
I3 = Ax.(Ax.(Ax.x)x)x

I4 = Ax. (Ax. (Ax. (Ax.x)x)x)x

Since x is always bound within the body of the abstraction, this causes
no problems with variable capture. But all the terms in this sequence
behave the same way; in fact, the application of any one of them to a
term M is 3-convertible with the application of any other to the same
term M and, ultimately, with M itself: .M —g [,_1M —p - —p
LM —pg M.

But n-conversion might nevertheless be an inappropriate notion of
equality in some cases. If we are reducing only to weak normal form,
for example, then reduction of Ax.Q) terminates immediately, while
reduction of Q will never terminate. The introduction of types can
also pose problems for the notion of n-conversion. But where we can
employ m-conversion, we can at times drastically reduce the number
of substitutions required due to -reduction by simplifying the terms
involved using n-conversion first. In the end, whether we decide it is
appropriate or not to add n-conversion to our lambda calculus, the
operational equivalence between terms that it highlights is well worth

keeping in mind.

12.2.2 Extending the Lambda Calculus

While we have taken some time to explain the lambda calculus, the

system itself is quite lean. It is also powerful. Indeed, we can use it to
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describe any computation we could describe with a Turing machine.
Such a description is also similarly lengthy and inconvenient. Thus,

we will extend the lambda calculus in two major ways:

e We will introduce a new set of normal-form lambda terms as
constants, so that the numbers, booleans, and so forth become
primitive concepts of the calculus rather than needing to be en-

coded in terms of lambda terms.
¢ We will introduce typing into the system.

These extensions also serve to raise the level of abstraction of the

lambda calculus closer to that of a functional programming language.*

Untyped Lambda Calculus with Constants

We first extend the pure untyped lambda calculus by adding conN-
STANTS. As when we introduced variables, we can formally define the
constant terms as normal form lambda terms built from a base symbol

c distinct from the v used for variables and many primes:

A=VICIAA) (VA
Vov|V

C—c|C

and then our use of, say, ¢ to represent the integer 0 becomes purely a
matter of convention. But just as we established variable naming con-
ventions to make our notation more readable, so too can we establish
conventions for writing constants that allow 0, 1, True, and so forth to
appear directly in our notation.

But we are not restricted to adding only static constants such as the
numbers and booleans. We can also take some to be operators, such

as a test for equality =, addition +, subtraction —, or even If. These

This section follows the development of the lambda calculus in Hudak [57] closely,
including use of some of the same examples.
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clearly operate on other terms, but how remains to be defined. That
is the purpose of 6-RULES, which are basically ad hoc reduction rules
for dealing with constant terms much as 3-reduction describes more
generally how to reduce expressions of any lambda terms.

For example, we can give a set of 5-rules that make + operate on the
particular constants that we have identified with the integers in a way

consistent with our intuitive understanding of addition:

(+0)0—50

We can deal with If likewise:

If True e1ey; —5 eq

If False e1ey —5 ez

In extending the system with &-rules, we must be very careful to
preserve properties we consider essential to the system, such as the
Church-Rosser properties. For example, if we were to add é-rules such
that Or becomes a left-to-right, short-circuiting operator, we would be

fine:

Or True e —g True

Or False e —5 e
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But if we wanted to add é-rules truer to our intuitive understanding of
Or, namely that it yields true if either of its operands is true, regardless

of the value of the other operand, we might add rules such as:

Or True e — 5 True
Or e True —g True

Or False False —§ False

But, with the addition of these rules, it would no longer be true that
a normal order reduction strategy guarantees reduction of a term to
normal form if it has one. In fact, no deterministic reduction strategy
would suffice to regain that property! Any deterministic strategy, on
encountering Or ey e, would have to always reduce e; or always
reduce e, before reducing the other term. If it always first reduces ej,
then it will fail to reduce Or Q True to normal form; if it always first

reduces e, then it will fail to reduce Or True Q) to normal form.

Typed Lambda Calculus with Constants

The addition of constants to the lambda calculus merely made it eas-
ier for us to express concepts already expressible in the pure lambda
calculus. The central notions of abstraction, application, and of the var-
ious kinds of reduction and conversion that we had introduced for
the lambda calculus remained untouched. The only definition we re-
ally had to modify was that of a normal form, and we modified that
implicitly with our introduction of constants as distinguished, normal
form lambda terms. The introduction of types, however, fundamen-

tally changes the lambda calculus.
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To develop the typed lambda calculus with constants, we begin by
adopting a lambda term grammar identical to that used for the lambda

calculus with constants:

A—=VIC|I(AA)|(AVA)
Vov|V

C—c|C

We then introduce alongside this a parallel set T of TYPES compris-

ing type variables, constants, and function types:

T—VI|C|F
VooalV
C—¢¢|C

F—=(T—T)

Notational conventions accompany this introduction:
® 0, T, L represent arbitrary types.
* o, 3,y represent arbitrary type variables.

¢ The function type arrow — is considered to associate to the right.

Thus, 0 — T — v should be read as ¢ — (T — v).

We will not need to refer to arbitrary type constants, so no convention
addresses them. Just as we named certain constant lambda terms 0, 1,
and so forth, so too can we introduce names for various constant types,
such as int, real, and bool.

Lambda terms and types come together in STATEMENTS. A state-
ment M : o says that a given term M, the sUBJECT of the statement,
can be assigned type o, the PREDICATE of the statement.

Whereas lambda terms formed the basis of the pure lambda calcu-

lus, statements make up the basis of the typed lambda calculus. When
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we introduced constants into the pure lambda calculus, we had to in-
troduce 6-rules that formally related those constants within the system.
We used these -rules to establish relationships that agreed with our
intuitive understanding of how the constants were interrelated, but we
had to be sure not to introduce a careless rule that changed the very
properties of the lambda calculus that make it so useful to us. The par-
ticular statements that make up the basis of the typed lambda calculus
are also left to our discretion, and we can use them in a similar way.
Thus, we will assume, for example, that True : bool and False : bool,
and that 0 : int, 1: int, and so on. Formally, the basis — let us call it B —
is composed of a set of statements whose subjects are distinct variables
or constants.

Using this basis, we can assign types to other lambda terms. If we
can derive a statement M : o from the basis B, then we write B - M : o.

All statements can be derived using three rules:

e BAsIs. If x : 0 is an element of the basis, then we can make the

statement that x : o.

x:0€B
BkEx:o

* — INTRODUCTION. Abstraction is analogous to creating a func-
tion by transforming a variable in an expression into a parameter.

The type resulting from abstraction reflects this.

BkEx:0 BFEFM:T
BFEAxM):(0c—1)

* — ELIMINATION. Application is analogous to applying a func-
tion to an appropriate argument, and this is reflected in the type

of an application.

BFM:(c—1) BFEN:o
BFMN):T
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The introduction of types has important implications for the central
properties of the lambda calculus. The Church—Rosser property per-

sists, but we gain several other powerful properties:

® SUBJECT REDUCTION. Type persists unchanged through f3-re-

duction.

BFM—-gM BFM:o
BFEM':o

® STRONG NORMALIZATION. If a term can be assigned a type,

then it is strongly normalizing.*

® DECIDABILITY OF TYPE-CHECKING. Given a basis B and a

statement M : o, it is decidable whether B - M : o.

e DECIDABILITY OF TYPE INFERENCE. Given a basis B and a
term M, we can decide whether there is any o such that B+ M :

o. If there is, then we can use B and M to compute such a o.

These are indeed powerful, useful properties, but the overall expres-
sive power of the lambda calculus in fact decreases with the introduc-
tion of types. Recall that, in the pure lambda calculus, there were terms
without normal forms, such as Q. The term that we used to introduce
recursion into the lambda calculus, Y, has no normal form. Both Q and

Y apply a term to itself:

Q = (Ax.xx) (Ax.xx)

Y = AMf.(Ax.f(xx)) (Ax.f(xx))

As you can see, they actually make use of nested self-application: both
terms contain the application (x x) within the application of one ab-
straction to the selfsame abstraction. In Q), this abstraction is Ax.xx; in

Y, it is Ax.f(xx).

* Recall that a term is strongly normalizing if and only if it always {3-reduces to normal
form after a finite number of reductions.
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But these terms cannot be assigned a type, for the fundamental rea-
son that self-application is not typable. Let us see what happens when
we attempt to assign a type to Ax.xx. We know that x must have some
type, say, 0. The rule of — introduction specifies that, to apply one
term to another, the first term must be able to be assigned a function
type and the second term must be able to be assigned the same type
as that to the left of the arrow in the function type. But this means that
the type of x must be a solution to the type equation o = (0 — 1), and
there is no such type in our typed lambda calculus with constants.*

We are not so sad to see () become untypable. A term that does
nothing except lead to endless B-reduction is useless to us. But we
needed Y to define recursive functions. Regaining Y is the point of our

next extension.

Typed Recursive Lambda Calculus with Constants

After the effort of the past two extensions to the lambda calculus, ex-
tending the typed lambda calculus with constants to encompass recur-
sion is surprisingly simple. All we need do is introduce a polymorphic
fixed-point operator among our constants, introduce an appropriate
type into our basis, and craft a 5-rule to make this operator behave as
we desire.

Thus, we anoint Y our fixed-point operator name of choice. The only
functions we want to apply Y to are those that must recurse upon
themselves. As such, they must consume the very type of value they
produce, that is, the type of any such function must be (0 — o). A
fixed point of such a function must have the type of the argument of
the function. Since Y, given a function, produces a fixed point of that
function, we assign Y the family of types Y : (0 — o) — o, which is to
say that we add a Y5 : (0 — o) — o to our basis B for every type o

that can be formed according to our grammar for types.

It is possible to extend the lambda calculus so that self-application becomes typable;
see the discussion in Barendregt and Hemerik [19, Section 3.2, pp. 14-17] of recursive
types and the Ap-calculus.
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That Y in fact is a fixed-point operator is represented in the lambda
calculus by the fact that YF =g F(YF). The final element of our exten-
sion, then, is a family of 3-rules corresponding to the family of typed

fixed-point operators Y that reintroduces this convertibility:

BFM:(0c— 0) BFM:(0c— o)
(Yo M) =5 (M (Yo M)) (M (Yo M)) —5 (Yo M)

This has the effect that, if M : (¢ — o), then (Yo M) and (M (Yo M))
are interconvertible. We call this type of conversion TYPED Y-CON-
VERSION.

With this final extension, we now have a lambda calculus that closely
resembles the lambda calculi that underlie modern functional languages.
But, before we talk of them, perhaps we ought to go over the develop-

ments and languages that led to today’s functional languages.

12.3 BIBLIOGRAPHIC NOTES

De Bruijn indices were first described in de Bruijn [38]. Other nota-
tions for variable binding have been developed more recently; McBride
and McKinna [80] describes an interesting hybrid that uses de Bruijn
indices for bound variables and (ideally, meaningful) names for free
variables.

We have not made as fine a distinction between the different reduc-
tion strategies as that made by Sestoft [118]. Our description equates
call by value with applicative order and call by name with normal or-
der, while he carefully distinguishes these in terms of where reduction
can occur.

We have barely scratched the surface of the lambda calculus and
type theory. Those interested in the impact of the lambda calculus
on logic and computer science would find Barendregt [18] interesting

reading. Turner [130] explains the significance of the lambda calculus

169



170

THEORY

and Church’s thesis in general for functional programming in but one
chapter of a book [94] dedicated to examining Church’s thesis seventy
years after its postulation. If the theory of the lambda calculus itself is
more in line with your interests, Barendregt [17] is the standard refer-
ence for the untyped lambda calculus and develops many aspects of
the topic in tremendous detail. The lambda calculus in one form or an-
other is also often hurriedly introduced as more or less new material
where needed in books and articles dealing with functional program-
ming.

The concept of type can itself be introduced into the lambda calcu-
lus in a variety of ways and then subsequently elaborated. Cardelli and
Wegner [29] provides a very readable introduction to practical issues of
types and programming languages — the presentation of types in this
chapter is significantly influenced by the presentation therein — while
Barendregt and Hemerik [19] looks more carefully at the ways typing
can be introduced formally into the lambda calculus; our formal def-
inition of the pure, untyped lambda calculus follows in part the two-
page summary given near the beginning of this article. The process
we followed of gradually extending the pure untyped lambda calculus
into the typed recursive lambda calculus with constants follows that
of Hudak [57]. Thompson [125], developed from lectures given at the
University of Kent and the Federal University of Pernambuco, Recife,
Brazil, introduces types in the context of programming languages and
constructive logic, while Pierce [112] is a full-length textbook on type
theory, and Pierce [111] an edited collection of research papers on the

topic.
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13.1 PREDECESSORS

There does not appear to be a consensus on which language was the
first, truly functional language. This is because the argument inevitably
ends up being about how the terms of the argument should be defined.
What is a functional language? Are there elements it must have? Ele-
ments it must not? Do research languages count, or does a language
have to have seen significant “real world” use? Is a given “language”
really a language, or is it simply a dialect?

You will have to make up your own mind about these matters, pos-
sibly on a case-to-case basis. Regardless of your decisions, there is a
good consensus on which languages contributed to the development
of the functional family, regardless of whether or not they truly belong

to it. To dodge the whole issue, we will simply characerize them as the

predecessors of modern functional languages.

13.1.1  Lisp

The earliest predecessor is the list processing language. Known as LISP
when it first appeared in the late 1950s (it was all the rage then to
capitalize the names of programming languages), and since grown into
a diverse family of Lisps, it appeared shortly after Fortran. It originated
with McCarthy, and, in fact, elements of its list processing facilities

were first implemented as extensions of Fortran [122].
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Lisp grew out of artificial intelligence, particularly the expert sys-
tems and their need to perform list processing and limited theorem
proving. In fact, the list is its primary and most characteristic data
type. Lisp programs themselves can be characterized and represented
as lists, and this lends Lisp its most distinctive feature: its heavy use of
parenthesization. The ability of Lisp to represent itself in itself — Lisp
lists are Lisp programs are Lisp lists — is known as HOMOICONICITY,
and this lends Lisp much of its power and extensibility.

This focus on lists is unlike the lambda calculus, which features func-
tions as its sole data type, and even in its extensions remains solidly
anchored by its focus on the function. McCarthy draws on the lambda
calculus solely to provide a notation for “functional forms” as opposed
to functions — basically, to indicate which positional argument should
be bound to which variable name in a function’s definition. In intro-
ducing Lisp, he in fact states that the “A-notation is inadequate for
naming functions defined recursively” and introduces an alternate no-
tation [83]. Many languages today get by using the lambda term Y that
we introduced earlier for this purpose; the impact of the lambda cal-
culus on Lisp was superficial, and this is in good part why one might
want to exclude Lisp from a list of functional languages.

Much of the spirit of functional languages, however, first appeared
in Lisp: functions as “first-class citizens” and the use of recursive func-
tions as opposed to step-variable-based loops, as well as an elegant,
remarkably simple definition characterize both Lisp and the modern
functional languages. As far as elegance goes, it is possible to write a
Lisp interpreter in not very many lines of Lisp.

Lisp flourished as artificial intelligence flourished, and it weathered
the cold Al winter, perhaps even better than Al did itself. It was readily
implemented by many groups and extended in many different direc-
tions, so Lisp soon became more a family of languages than a single

language. From the 1960s on, there were two major Lisps (Interlisp
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and MacLisp) and many other significant Lisps. Today, the two pri-
mary Lisps are Common Lisp, the result of a standardization effort in
the 1980s, and Scheme, which in the mid-1970s sprang out of ongoing
research in programming language theory and so was inspired more

immediately by the lambda calculus.

13.1.2 [swim

Iswim (for “if you see what I mean”) is a family of programming
languages developed in the mid-1960s by Peter Landin. It is the first
language that really looks like modern functional languages. In stark
contrast to Lisp, it is not all about lists, it uses infix notation, and it
is thoroughly based on the lambda calculus. It also features let and
where clauses for creating definitions local to a given scope. This is one
of the most immediately visually distinctive elements of modern func-
tional languages. Iswim also allowed the use of indentation (signifi-
cant whitespace) for scoping alongside the more common punctuation-

based delimiters.

13.1.3 APL and FP

APL (“a programming language”), developed in the early 1960s by
Kenneth Iverson, was never intended to be a functional programming
language, but rather an array programming language. Thus, it pro-
vided built-in support for operating on arrays in terms of themselves
rather than in terms of their elements, as well as ways of compos-
ing these array operations. It is also notable for its concision: it was
intended to be programmed in using a specialized alphabet. This, cou-
pled with its approach to handling arrays, led to very compact pro-

grams.
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It appears to have influenced John Backus in his development of FP.
FP itself never saw much, if any, use. It was advocated in Backus’ 1978
Turing award lecture in which he warned of the “von Neumann bottle-
neck” that ultimately constrains imperative programming languages
to “word-at-a-time programming.” FP intended to do for functional
programming what structured programming did for imperative pro-
gramming with its standard control flow constructs by providing a
few higher-order functions (“functional forms”) that he considered es-
sential and sufficient for whatever one might want to do.

FP is most notable in the history of functional languages for the
credibility it lent to the field — Backus received the Turing award in
good part because of his fundamental role in the development of For-
tran — and the interest it generated in functional programming. While
the development of modern functional programming languages took a
different road than that defined by FP, FP’s emphasis on algebraic rea-
soning and programming using higher-order functions is very much

of the same spirit.

13.2 MODERN FUNCTIONAL LANGUAGES

While the who’s in, who’s out of older languages is up for debate,
most modern functional languages bear a close family resemblance.

The central features of a modern functional language are:
e first-class functions and a firm basis in the lambda calculus;
e static typing coupled with type inference and polymorphism;
¢ algebraic data types and pattern matching.
Most modern functional languages also feature:
* abstract data types and modules;

¢ equational function definitions and boolean guards.
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We will discuss each of these in turn.

13.2.1 Central Features

First-Class Functions and the Lambda Calculus

It is quite easy to represent functions in the lambda calculus and to cre-
ate functions of functions. Such HIGHER-ORDER FUNCTIONS are un-
usual in imperative languages. Among the provided data types, they
are usually second-class citizens: they have no literal representation,
but can only be created through statements, nor can they be assigned
to variables, passed into or returned from other functions. They are
not on par with the integers or even characters.

Functional languages make functions first-class citizens. This means

that:*

* Functions are denotable values: there is some way to describe a
function literally, just as you would write 5 to denote the integer

five without having to give it a name.

¢ Functions can be passed into functions: such functions with func-

tional arguments are known as HIGHER-ORDER FUNCTIONS.
e Functions can be returned from functions.

* Functions can be stored in data structures: you can create lists of

functions as readily as you would lists of integers.
¢ Storage for functions is managed by the system.

With functions as first-class citizens, it easy to create and employ higher-
order functions, and functional programming has a rich vocabulary

describing common, heavily-used higher-order functions and common

* This particular list is due to Mody [92]; others provide similar lists of “rights” char-
acteristic of first-class data types. Some authors go further and describe the rights
typical of second- and third-class data types, as well [for example 117, §3.5.2].
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types of higher-order functions. First-class functions are also employed
extensively in the form of curried functions.

First-class functions is the most striking result of functional lan-
guages’ basis in the lambda calculus, and it heavily influences the
entire style of programming in functional languages. But taking the
lambda calculus as the starting point of the entire programming lan-
guage is the most radical characteristic of modern functional languages,
and the effects of this choice are felt throughout the resulting lan-

guages.

Static Typing, Type Inference, and Polymorphism

Modern functional languages are statically typed. They are based, not
on the untyped lambda calculus, but on some variety of the typed
lambda calculus. The introduction of types has advantages from the
software engineering point of view. It also has advantages from the
point of view of compiler performance.

Static typing in imperative languages is often regarded as a burden
because of the need to declare the type of all variables and functions.
Modern functional languages relieve this burden through type infer-
ence. This means that code written in functional languages is free to
omit redundant type declarations: if you state that x = 5, then there
is no need to reiterate that x is an Integer for the sole benefit of the
compiler. Modern functional languages are designed to allow type in-
ference, and their compilers are designed to perform it.

A surprising result of type inference is that it makes polymorphism
the standard behavior for functions. Whenever a function could be
construed as taking operands of a more general type, it is, unless an
explicit type declaration is supplied that restricts this.

The standard higher-order function map is a good example of this. map
takes as its arguments a function and a list and produces a list contain-

ing the results of applying the function to each element of the original
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list in order. That description is somewhat complex; an example would
perhaps be simpler. If we take for granted a boolean function isNonZero
that takes an integer argument and returns either True if the number

is nonzero or False if it is zero,* then

map isNonZero [0, 1, 2, 3]
J
evaluates to
[isNonZero 0, isNonZero 1, isNonZero 2, isNonZero 3]
and thence to
[False, True, True, Truel J

The type of map is (a -> b)-> [a] -> [b], where a and b here are type

variables as discussed in Polymorphism, p. 137.

Algebraic Data Types and Pattern Matching

A distinctive characteristic of the type systems of modern functional
languages is their support for creating and using ALGEBRAIC DATA
TYPES (ADTS). Algebraic data types are so called because they can
be looked upon as a sum of products of other data types. What this
means practically is that algebraic data types function as discriminated
(tagged) unions; the tags are called DATA CONSTRUCTORS and serve
to wrap the supplied data in the algebraic data type. Pairs and lists are
simple examples, but since special syntax is often supplied to make
their use more natural, they are not very good examples of creating
ADTs.

Let us instead consider an algebraic data type representing a tree
with values of some unspecified type stored in the leaves. The declara-

tion of such a data type might look like

data Tree a = Leaf a | Branch (Tree a) (Tree a) J

* We can define isNonZero in Haskell as isNonZero x = not (x == 0).
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(The unspecified type that is being wrapped is represented here as a
.) This also happens to be a recursive data type: each branch wraps a
pair of subtrees. The declaration tree = Branch (Leaf 1)(Leaf 2) gives
the variable tree the value of a branch with two leaves of integers.
Thus, we have values of type Integer substituting for the type variable
ain Tree a. The variable tree thus has type Tree Integer, read “tree of

integer,” and corresponds to the tree

We have seen that it is simple to create an algebraic type and build
instances of that type. But how do we get at the wrapped information?
To decompose algebraic data types, modern functional languages sup-
port PATTERN MATCHING.

The fundamental pattern-matching construct is the cAsE expression.
Its basic form indicates the variable for which cases are being enumer-
ated and then sets up a correspondence between patterns and expres-
sions to evaluate as the value of the case expression in the event the
corresponding pattern matches the provided variable. The patterns are
checked in the order they are listed; the first matching pattern decides

which expression is evaluated. Still informally, but somewhat more

symbolically, we could represent the form of the case expression as

case (variable) of ((pattern) -> (expression)) ™"

As an example, let us suppose we wish to count the number of
branches in a tree. An example of such a function is countBranches of
Listing 13.1 on page 179. The patterns are analogous to the expressions
we would use to construct the type of data that the pattern matches;

the variables of the patterns, rather than passing data into the construc-
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Listing 13.1: Pattern-matching via case

countBranches tree = case tree of
Leaf _ -> 0
Branch a b -> 1 + countBranches a
+ countBranches b

tors, instead are used as names for the data that was initially supplied
as parameters to the constructor.

The type of this function together with its name provide an excel-
lent summary of its behavior. It also provides us with another exam-
ple of polymorphism and our first example of subtyping. The type of
countBranches is (Num t1)=>Tree t -> t1. Here, (Num t1)=> expresses a
restriction on the type of the type variable t1 used in the rest of the
type expression. It says that the type of t1 must be some subtype of the
type class Num. The underscore you see in the definition of this function
is used in patterns as a “don’t care” symbol: it indicates the presence
of a value that we choose not to bind to a name, since we do not intend

to refer to the value.

13.2.2 Other Features

Abstract Data Types and Modules

ABSTRACT DATA TYPES are data types that hide their concrete rep-
resentation from the user. In this way, the representation of the type
becomes internal to it: the fact that, say, a stack is actually implemented
as a list is hidden, and only operations dealing with stacks as stacks
are exposed. This means that the implementation of the abstract type
can be changed as necessary. For example, if lists proved too slow to
support the heavy use we wished to make of stacks, we could move
instead to some other representation without having to change any of

the code that used our stacks.
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This kind of implementation hiding together with interface exposure
is frequently accomplished through a module system. The existence of
a powerful and usable module system is an important part of the “com-
ing of age” of functional languages, because modules are necessary to
support “programming in the large” as is necessary in real-world envi-
ronments where complex problems must be solved and large amounts
of code are involved. In terms of modules, an abstract data type’s repre-
sentation is hidden by not exporting representation-specific definitions
for use in the program importing the module.

In the context of abstractions of algebraic data types, this takes the
form of not exporting the data constructors. Instead, other functions
are exported that make use of the data constructors without exposing
this fact to the user of the abstract data type. A simple version of such
a function would simply duplicate the data constructor. More complex
versions can build in bounds-checking, type-checking, or normaliza-
tion of the representation — for example, such a “smart constructor”
could be used to ensure an internal tree representation remains bal-

anced.

Equations and Guards

Modern functional languages support a very readable, compact nota-
tion for defining functions that builds on the pattern matching per-
formed by case statements. They allow functions to be defined as a
sequence of equations. Listing 13.2 on page 181 reimplements the func-
tionality of Listing 13.1 (p. 179) using an equational style of function
definition. If you compare this new definition to the earlier definition,
which used the case expression, you will see that the pattern matching
is implicit in the syntax used to define functions equationally.
Another feature of modern functional languages that simplifies func-
tion definition is GUARDS. Guards are boolean predicates that can be

used in function definitions and case statements. Guards block the ex-
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Listing 13.2: Pattern-matching via equational function definition

countBranches2 (Leaf _ ) =0
countBranches2 (Branch a b) = 1 + countBranches a
+ countBranches b

Listing 13.3: Cases with guards

True

| otherwise

isLeaf t | countBranches t > 0 = False J

pression they precede from being used when they evaluate to false,
even if the pattern preceding the guard matches. The first pattern and
guard successfully passed determines the case that applies to the given
value.

An an example, we could use one of the countBranches functions
given earlier to define an isLeaf predicate for use with our trees. If the
tree has zero branches, it must be a leaf. If it has one or more branches,
it must not be. In Listing 13.3 on page 181, we use a guard that applies
this number-of-branches test in order to prevent the function isLeaf
from evaluating to True when its argument t is a tree with more than
zero branches.

We can also describe guards in terms of how the same effect could be
accomplished using other expressions. Guards used with function def-
initions can be seen as equivalent to chained if expressions where each
successive guard appears in the else branch of the preceding guard.*
The expressions being guarded in the function definition become the
contents of the then branch that is evaluated if their guard evaluates

to true. A translation along these lines of the isLeaf function of List-

ing 13.3 (p. 181) is:

islLeaf2 t = if countBranches t > 0 then False else True J

We do indeed mean if expressions, not if statements. An if expression can be used
anywhere an expression is expected. The else branch is always required, which means
the expression will always have some value, either that of the true or the false branch.

181



182

HISTORY

Listing 13.4: Guards as chained if-then-else-expressions

isLeaf3 t = if countBranches t > 0
then False
else if True
then True
else True

But, since the otherwise of Listing 13.3 (p. 181) is simply another name
for True, we can produce a more faithful (and redundant) translation
of the original isLeaf function, as shown in Listing 13.4 on page 182.

We can similarly transform a case statement that uses both patterns
and guards, but this requires a significant amount of nesting and du-
plication. We must first attempt to match the patterns. As before, if a
pattern does not match, the next pattern is tried. Each guard migrates
to the corresponding expression. The original expression is wrapped
in an if expression that tests the corresponding guard condition. If the
test succeeds, the then branch is the expression corresponding to the
pattern just matched and guard just passed is evaluated. Otherwise,
we must duplicate the remaining patterns and guards, and transform
them similarly.

An example should clarify this. We will not use descriptive names as
before, because they would obscure the transformation and motivating
such descriptive names would unduly prolong this discussion. The
case expression with three guarded branches of Listing 13a (p. 183)
can be transformed as described above into the nested case expressions
without guards of Listing 13b (p. 183).

These transformations can be adapted to handle multiple guarded
expressions per pattern, but transformation process only becomes more
tedious. The examples given should suffice to demonstrate how much
the use of guards simplifies both reading and writing of functional

programs using pattern matching.
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Figure 13: Transforming a case statement to eliminate guards

(a) With Guards (b) Without Guards
case E of case E of
P1lgr — e P1 — By
p2lg2—e p2 — B2
p3lg3; —e3 p3 — B3
where
By = if J1
then e;
else
case E of
p2 — B2
p3 — B3
B, =if g2
then e)
else
case E of
p3 — B3
B3y =if g3
then e3
else error ("Patterns not"++
" exhaustive")

13.3 CLASSIFIED BY ORDER OF EVALUATION

Functional languages developed along two branches. These branches
are distinguished by their evaluation strategy: one branch pursued the
applicative order, call-by-value evaluation strategy; the other pursued
the normal order, call-by-name evaluation strategy. Languages belong-
ing to the applicative order branch are called EAGER LANGUAGES be-
cause they eagerly reduce functions and arguments before substituting
the argument into the function. Presented with the application f M,
where f —pg ' and M — M’, an eager language will reduce f M to
"M’ and only then substitute M’ into f. Languages that are part of the
normal order branch are called LAZY LANGUAGES, because they delay
reducing functions and arguments until absolutely necessary. When a
function is applied to an argument, they simply substitute the argu-

ment wholesale and proceed with reduction of the resulting lambda
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term. When a lazy language encounters an application f M of f to M,
it immediately performs the substitution of M into f.

The branches have also diverged along the lines of purity and strict-
ness. Eager languages have historically been IMPURE, meaning that
they allow side effects of evaluation to affect the state of the program.
DESTRUCTIVE UPDATE (also known as mutation) is a prime example.
Using destructive update, we can sort a list in place simply by mu-
tating its elements into a sorted order. Without destructive update, we
would be forced to use the old list to produce a new list, which requires
us to allocate space for both the original list and its sorted counterpart.

While destructive update might lead to local improvements in effi-
ciency, it and other impurities destroy REFERENTIAL TRANSPARENCY,
since the same expression no longer evaluates to the same value at all
times and places in the program. Consider the list ell = [3, 2, 1].
With this definition, head ell evaluates to 3. But if we sort it in place,
later occurrences of head ell will evaluate to 1. As you can see, head
ell is no longer always equivalent to head ell: the reference head ell
is no longer transparent.

Losing referential integrity complicates reasoning about the behav-
ior of the program and the development of any proofs about its be-
havior. While impurity makes it easier to rely on knowledge of data
structures and algorithms gained while using imperative languages, it
also undermines one of the strengths of functional programming, that
its programs are easier to reason about. The ability to fall back on im-
perative algorithms also stunts the development of purely functional
data structures and algorithms. This is impurity as crutch.

While lazy languages have remained pure, this is in good part due to
necessity. Lazy reduction makes it difficult to predict when a particular
term will be reduced, and so it is hard to predict when the side effects
of a particularly reduction would occur and difficult to ensure they

occur when you wish.
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The decision between strict and non-strict semantics has also fre-
quently fallen along family lines. Eager languages are almost always
strict, by which we mean that the functions of that language default
to being strict.* If they are going to pursue an applicative order reduc-
tion strategy, unless they investigate some sort of concurrent pursuit
of several reductions simultaneously, then they will be stuck reducing
a divergent argument regardless of whether it would be needed by
the function once the substitution of the argument into the function is
made. This is the case when functions that ignore their argument are
applied to a divergent term: (Ax.Ay.y)Q —p Ay.y, but if you attempt
to evaluate Q prior to substituting it for x in the function, the evalua-
tion will diverge. Lazy languages, on the other hand, will not fall into
this trap. Their evaluation strategy makes them non-strict.

The way that laziness forces a language to take the “high road” of
purity has been referred to as the “hair shirt of laziness” [102]. The
purity that results from adopting non-strict semantics has a pervasive
effect on the entire language. For example, one is forced to discover a
functional way to cope with input-output, and computation with in-
finite data structures becomes feasible. Infinite data structures are us-
able in a lazy language because, so long as only a finite amount of the
structure is demanded, evaluation continues only until that amount
has been evaluated.

We have provided some background on the two primary branches
of the modern functional family. Now we will briefly summarize their

history.

13.3.1  Eager Languages

The most influential eager languages have fallen under the umbrella

of the ML family. ML originally began as the metalanguage (hence the

Whether it is even possible to avoid strictness in a particular case, and the particular
methods for doing so where it is possible, will differ from language to language.

185



186

HISTORY

name) for the LCF theorem prover project under way at the University
of Edinburgh in the early 1970s. It bears a resemblance to Landin’s
proposal for Iswim. It is a modern functional language, and as such
supports the features discussed earlier. Its strong emphasis on type
inference was groundbreaking. Type inference was made possible by
Milner’s rediscovery of a type system earlier described by Damas and
Hindley that walked the fine line between a too powerful type sys-
tem in which type inference is infeasible and an overly restrictive type
system.

In the late 1980s, ML was standardized under the name Standard
ML. Standard ML is unusual among programming languages in that
the entire language has a formal definition, first published in 1990.
Standard ML’s support for modules (called structures in Standard ML)
is unusually extensive and complex; module signatures (interfaces) can
be specified separate from the modules themselves, and it is possi-
ble to define functions over modules (such functions are known in
ML as functors). A revised edition of the definition was published in
1997. Along with some slight changes to the language, the revision
introduced the Standard Basis Library in order to specify a common
set of functionality that all conforming Standard ML implementations
should provide.

ML’s background as a metalanguage for a theorem prover is re-
flected in its continuing use in programming language research and
theorem proving. This research is greatly aided by the published stan-
dard: extensions of the language have a solid basis on which to build.
But SML was not the only outgrowth of ML.

The Caml languages are another branch of the ML family. This
branch has arguably eclipsed Standard ML, particularly in the number
of non-research uses to which its languages have been put. Caml was
originally an acronym for “Categorical Abstract Machine Language”;

the name has been retained, though the abstract machine has long
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been abandoned in its implementation. The language began develop-
ment in 1987 for use in projects of the Formel project at INRIA; the
primary outgrowth of this has been the Coq proof assistant. Because
the language was meant for internal use, it was not synchronized with
Standard ML, since adhering to a standard would make it difficult to
adapt the language as needed to suit the problems faced in the group’s
work.

The start of the 1990s saw the reimplementation of the Caml lan-
guage. This version of Caml was called Caml Light and featured a
bytecode compiler. The interpreter for this bytecode was written in C
so as to be easily portable. A bytecode-compiled program can run with-
out changes on any platform to which the interpeter has been ported.
Caml Light was promoted as a language for education.

In 1996, Objective Caml made its debut. Objective Caml adds sup-
port for object-oriented programming to Caml Light, strong module
support, an extensive standard library, and compilation to native code
in addition to continuing support for bytecode compilation. In the
mid-2000s, Objective Caml became the inspiration for Microsoft’s F#
programming language meant to be used with their .NET framework.

The Caml family of languages provides a marked contrast to the
Standard ML family. While Standard ML was published as a formal
document with clear roots in programming language research, the de-
velopment of the Caml languages is driven by their continued use for
day-to-day programming to support other interests. Standard ML is a
single language with many independent implementations. The Caml
family, on the other hand, is defined by its provided compiler: what-
ever the compiler will accept is what the language is at any given
time. Thus, a Caml language is defined more by its REFERENCE IM-
PLEMENTATION than by any formal document. Objective Caml is not
just a language, but a compiler and a host of other tools (such as a

preprocessor, profiler and debugger, and tools for performing lexing
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and parsing) that come together to make up the current version of

Objective Caml.

13.3.2 Lazy Languages

Our description of modern eager languages focused on the prominent
ML family. Modern lazy languages developed a bit differently. Much
of the early work in lazy languages was done by Turner in a series of
languages developed during the late 1970s and early 1980s.

1976 saw the appearance of SASL, the St. Andrews Static Language.
It introduced the equational style of function definition and the use of
guards. Functions were automatically curried, and indentation could
be used in place of semicolons. The type system was rudimentary.

KRC, the Kent Recursive Calculator, made its debut in 1981. It made
lists easier to use by introducing a shorthand notation and list com-
prehensions. Both will seem quite familiar to anyone acquainted with
higher mathematics. Shorthand notation allowed the use of ellipsis
dots to express ranges. Thus, [1..5] is equivalent to [1, 2, 3, 4, 5],
and [1..] creates the infinite list [1, 2, 3, 4..]. LIST COMPREHEN-
SIONs™ provide a compact notation for generating lists from other
lists.

For example,

[ 2#x | x <- [0..], 2*x < 100 ] J

can be read as “the list with elements 2 x x, where x =0,1,... and 2 *
x < 100.” This is similar to the set expression {x | x € NA2-x < 100}.
As you can see, the notation for the list comprehension has two sides.
The right hand side contains generating expressions and filters. Gener-
ating expressions such as x <- [0..] introduce a name. In the course

of evaluating the list comprehension, this name will be bound to each

We now call them list comprehensions. At the time, they were described as both set
expressions and ZF expressions.



13.3 CLASSIFIED BY ORDER OF EVALUATION

value of the generating list in turn. The left arrow <- can be read as
“drawn from.” Filters evaluate to either true or false. If they all evalu-
ate to true, then the current bindings of the names introduced by the
generating expressions are used to evaluate the expression on the left
hand side of the list comprehension. The result of evaluating the left
hand side expression is appended to the output list, new bindings are
made, and the process repeats. (While this description has not gone
over all the details, it should be enough to communicate the flavor and
expressiveness of list comprehensions.)

We likened list comprehensions to the set expressions used in math-
ematics, but a list comprehension differs from a mathematical set ex-

pression in two important ways:
¢ It can contain duplicates.
¢ Itis produced algorithmically and its results are ordered.

A simple list comprehension containing duplicatesis [1 | x <- [1..3]]
, which produces [1, 1, 1]. That the results are ordered is necessitated
by our drawing values from lists and putting the results in a list. That
the result is produced algorithmically is important when we use infi-
nite lists, as above where x is drawn from a list of natural numbers.
Even though we know that, once the output list has had 98 appended
to it, no greater value of x will satisfy the predicate 2-x < 100, the
interpreter will continue to evaluate the list comprehension until as
many values as we ask for have been produced; if we ask for all val-
ues, it will continue forever, since there is always one more x to try in
the infinite list [0..]. Thus, thinking of these as set expressions rather
than attractively concise ways to generate lists can lead to trouble.
Turner’s language design efforts culminated in Miranda. Miranda
was the first of his languages to feature a Hindley-Milner type sys-
tem. It included user-defined types and polymorphism. It also featured

SECTIONS, which solve a notational problem with infix operators. If
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we want to map a normal, prefix function f down a list L, then map f

L suffices. But if we wish to halve each element of the list, we must
resort to either defining a throw-away function, say half x = x / 2, or
defining an anonymous function using lambda notation, such as \ x

-> x / 2. Sections make it possible to refer to use the infix operator
directly here. Sections are written by surrounding the infix operator in
parentheses. If the operator alone is in parentheses (/), it is called a
section; if a value is supplied to the left or right, it is known as a left
or right section, respectively. Thus, we could express “halve each ele-
ment” by composing map with a right section of /: map (/2)L. Likewise,
we could generate a list of the reciprocals of all elements of the list L
using map and a left section of /: map (1/)L.

Turner founded a company in 1983 to commercialize Miranda. He
attempted to transfer lazy functional programming into industry. Mi-
randa was the most developed lazy functional programming language
of its time, but Miranda was not free. Distribution of derivatives was
prohibited without the company’s consent in order to avoid a prolifer-
ation of dialects and to keep Miranda programs portable, which led to
some conflicts with other researchers.

The late 1970s and early 1980s had seen a proliferation of similar
lazy, purely functional languages. The syntax differed, but the seman-
tics were virtually identical, so that researchers had no problem un-
derstanding each other’s papers. But the lack of a common language
was seen as a problem for both research, through the duplication of
effort, and for promoting use of lazy functional languages outside of
research, since no single language was supported and most had been
developed for research rather than industrial application.

This situation was resolved through the creation of a freely available,
purely functional, lazy language called Haskell intended for use in re-
search, education, and industry. Over the course of the 1990s, imple-

mentations of the Haskell language matured and Haskell eventually
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displaced Miranda in both education and research. Miranda continues
to be used and taught in some places, but the niche it once filled is
now occupied by Haskell.

While Haskell was intended to standardize the state of the art in
lazy functional languages, it did end up introducing new ideas. Type
classes were developed for the first version of Haskell. A type class can
be looked at as a named description of the functions that an instance
of the type class must support and the types of those functions. Types
that are declared to be instances of a specific type class then must
provide implementations of the type class’s functions. In a surpris-
ing parallel to object-oriented programming, those functions thus be-
come overloaded in a way that is resolved through a hierarchy of types.
(Object-oriented programming’s overloaded methods are resolved on
the basis of the object’s identity, an important distinction.) Type classes
have been extended in various ways as Haskell evolved, and Haskell
has become a playground for “type hackery” such as implementations
of Peano arithmetic at the type level.

The other new idea that Haskell embraced was the use of monads.
Monads entered Haskell some years after it was first standardized.
They came by way of denotational semantics; practical experience with
them in Haskell led to their extensive use to constrain side effects to
well-defined regions of a program so that referential transparency is
not destroyed. This led to a somewhat better solution to the problems
of input-output that have long plagued functional programs (about
which we will say more in the last part of this thesis).

Haskell has remained the state of the art in lazy functional lan-
guages. Its policy of allowing a published language definition to co-
exist with extensions of the language and various dialects has enabled
further research to be carried out by extending or modifying Haskell.
Extensions that are embraced by the community of Haskell users are

subsequently standardized and included in the next revision of the
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standard. Use of Haskell outside research continues to grow, as does

Haskell’s influence in the world of programming languages.

13.4 BIBLIOGRAPHIC NOTES

Hudak [57] surveys the history of functional programming languages
through the 1980s. It develops the concepts of the lambda calculus
and its extensions in parallel to the history. This survey particularly
influenced the overall shape of our history.

Lisp made its debut in McCarthy’s seminal paper “Recursive Func-
tions of Symbolic Expressions and their Computation by Machine,
Part I” [83].* There is a good body of literature on the history of Lisp.
McCarthy gives a recounting of its early history [81]. Stoyan [122] cov-
ers much the same time period, concluding their history a bit before
McCarthy, but where McCarthy’s history was based primarily on his
recollection, theirs is based on written records. It is very interesting
to watch the elements of Lisp gradually fall into place here and there
throughout various documents. McCarthy’s Lisp retrospective [82] pro-
vides a very concise recounting of the most significant innovations and
characteristic elements of Lisp. Steele Jr. and Gabriel [121] gives a fas-
cinating recounting of the tumultuous history of the Lisp family that
transpired between the early history as described by McCarthy and
Stoyan and the standardization of Common Lisp. Layer and Richard-
son [72] describes the novel elements of the Lisp programming envi-
ronment, including some information on Lisp machines, computers
that were specially developed to support Lisp and its environment. As
for Scheme, its community recently (2008) ratified The Revised® Report

on the Algorithmic Language Scheme.

If you read this paper, you will find that we have fudged some of the technical details
of Lisp’s description and omitted recounting some significant innovations that were
not relevant to the body of functional programming. This was intentional.
Affectionately known as the R®RS; the R°R part stands for the Revised Revised ...
Revised Report. For the report itself as well as details on the process that led to its
ratification, see http://www.rérs.org/.


http://www.r6rs.org/

13.4 BIBLIOGRAPHIC NOTES

Iswim was introduced by Landin [69] as language framework meant
to support creation of full-featured domain-specific languages. FP was
first described in Backus’s Turing award lecture [13]. APL is described
in a book [61] by its creator, Iverson.

Gordon gives a brief history [47] of the LCF theorem prover project
that led to ML and of LCF’s successors. The type system and inference
algorithm described by Milner [87] was also independently developed
by Curry [34] and Hindley [53]. Milner’s work was subsequently ex-
tended by Damas [35]. The type inference algorithm is known as both
the Hindley—Milner algorithm and the Damas-Milner algorithm and
centers around the unification of type variables. The algorithms can
also be expressed in terms of generating and subsequently solving a
system of constraints [113]. Kuan and MacQueen have described [67]
how two compilers, one for Standard ML and one the Objective Caml
compiler, have improved the efficiency of the algorithm by ranking
type variables.

Standard ML [88, 89, 9o] incorporated a module system developed
by MacQueen [74, 75, 76, 77]. Unlike the language definition itself, part
of the documentation of the Standard Basis is available online (http:
//sml.sourceforge.net/Basis) as well as in a book [45]. The website
provides only the formal specification; the book includes tutorials and
idioms, as well. An initiative (http://sml.sourceforge.net/) is under
way to support the development of common tools and test suites and
more coordination overall between Standard ML implementors and
implementations.

The recollections of a member of the team that developed Caml [32]
provided much of the material for our description of the Caml lan-
guage family. Information on the current status of the various Caml
languages can be found online (http://caml.inria.fr/).

Documentation of SASL and KRC is sparse. Very little on SASL was

published outside technical reports and user manuals. A later version
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of the user manual [131] indicates that SASL was extended with KRC’s
list comprehensions and support for floating point numbers. Another
paper [116] introduces the implementation of SASL at the Austin Re-
search Center, which went by the name ARC SASL. ARC SASL also
included list comprehensions, though there is no indication of floating
point support. KRC [129] was introduced as part of a paper explaining
why functional programming languages are superior to others, where
it is described succinctly as “(non-strict, higher order) recursion equa-
tions + set abstraction.”

Miranda was created by Turner in the 1980s [128] and heavily influ-
enced the design of Haskell. Miranda can now be freely downloaded
for personal or educational use from http://www.miranda.org.uk. The
history of Haskell, including its use of type classes and monads, is
thoroughly described [58] by several members of the committee that
developed the language. Current information, including an up-to-date
version of the published Haskell Report [100] defining the language, is

available online (http://haskell.org/definition).
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14.1 FROM INTERPRETERS TO COMPILERS

Higher-level imperative languages in a sense grew out of assembly
language. They were designed with compilation in mind. Functional
languages, however, have a history of interpretation. Lisp began solely
as an interpreted language, and ML programs were first run using
an interpreter written in Lisp. It was not immediately clear how to
compile such languages. The interpreters supplied a programming en-
vironment (for example, the interpreter might support both editing
and debugging of code from within the interpreter) and were used
interactively. The interpreter managed the runtime system, including
in particular GARBAGE COLLECTION, which freed space allocated to
data that had become useless. Later, such interpreters were extended
to support on-the-fly compilation of function definitions.

When it comes to functional languages, the distinction between in-
terpreter and compiler becomes blurry. Interpreters can perform com-
pilation, and compilers for functional languages frequently provide an
interactive interface in addition to simple compilation facilities. When
a program written in a functional language is interpreted, the interpre-
tation manages garbage collection, storage allocation, and other such
issues. All this bookkeeping is the province of the RUNTIME SYSTEM,
and it does not go away simply because one wants to compile a pro-
gram instead of interpret it. In order to work, the compiled represen-
tation of a program written in a functional language must be coupled

with a runtime system. It is a short step from providing each compiled
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representation with a runtime system to providing each with both a
runtime system and its own, private interpreter. This code-runtime-
system—interpreter package is self-sufficient: it is directly executable.
Such a package is, in fact, what some compilers for functional lan-
guages produce.

Other implementations offer the option of compiling a program to
a bytecode representation for interpretation afterwards by a virtual
machine. The same bytecode program can then be run on a variety of
platforms, so long as its minimal platform - the virtual machine - is

available to host it.

14.2 THE RUNTIME SYSTEM

The runtime system is an essential part of compiling functional lan-
guages. It provides a common set of functionality needed by all com-
piled programs. The two most critical services it provides are primitive
operations and storage management. Primitive operations are what ac-
tually perform the computation specified by é-rules. They also enable
programs to interface with their environment by providing access to
functionality related to the operating system. Storage management is
essential, since space is allocated as needed and must be reclaimed in
order to prevent excessive memory use. The run time system might
also handle threading, bytecode interpretation, and runtime linking of
object code. Because the runtime system oversees primitive operations
and memory management, it also plays an important part in profiling
the runtime behavior of the compiled code.

Every compiler for functional languages will contain a run time sys-
tem of some sort. A runtime system provides several distinct, major
services. Storage management can become quite involved; primitive
operations are a necessary part of producing working code. Since each

of these services can to some degree be dealt with independently of
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the others, the compiler’s structure may not reflect a concept of a run-
time system as such, but the basic services will nevertheless be in place

and recognizable; they simply will not be grouped together.

14.3 THE PROBLEM

We have seen that functional languages are based on the lambda calcu-
lus and provide the programmer with a variety of higher-level abstrac-
tions such as algebraic data types, pattern matching, and higher-order
functions. These have few parallels in imperative languages, and they
create new problems for compilation.

New abstractions are not the only source of problems encountered
when compiling functional languages. We compiled imperative lan-
guages by progressively lowering the level of abstraction of the pro-
gram’s representation till finally we were representing the program
in machine instructions. If we try the same lowering process with a
functional language, we run into a snag: instead of bottoming out
in machine language, we bottom out in the lambda calculus. Func-
tional languages are based on a model of computation fundamentally
different from the von Neumann model at the root of the impera-
tive languages. To compile a functional language, we must somehow
model the lambda calculus’s computation-through-reduction using the
von Neumann computer that is the target platform.

We will return to these problems as we go through the phases of

compilation.

14.4 THE FRONT END

The problems confronted by the front end do not change when we
move from imperative to functional languages. However, if we choose

to implement the front end in the functional language itself, we can
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take advantage of the abstractions offered by functional languages in
constructing the lexer and parser. If we instead implement generators
for lexers and parsers using the functional language, it becomes a sim-
ple matter to integrate lexing and parsing into a compiler written in
the language itself. Other programs written in the language then also
have ready access to a lexer and parser. Perhaps this goes some way to
explain why many compilers for functional languages are distributed
along with both a lexer generator and parser generator written in the
language of the compiler.*

As you might imagine, semantic analysis takes on a new importance
in languages where type inference is taken for granted and the pro-
grammer can create new data types. Type inference can be treated as
a pass in itself. Type inference replaces type checking, since once the
compiler has reconstructed a valid type for a term, the type has been
checked. If the term cannot be assigned a valid type, type inference has
failed: either the program is not well-typed, or the programmer must
supply type annotations for some term that is valid but for which a

type cannot be inferred.

14.5 INTERMEDIATE REPRESENTATIONS

Compilers for functional languages employ some intermediate repre-
sentations not used by imperative language compilers. Functional lan-
guages are on the whole a sugaring of the lambda calculus, and so
it is possible to represent a program written in a functional language
using smaller and smaller subsets of the full language. Thus, source-to-
source transformations, where code in the source language is rewrit-
ten in the source language in an altered form, play a more important

role in functional languages than is common in imperative languages.

That this allows the compiler writer to avoid the complexities associated with defin-
ing and then using a foreign-function interface to programs produced using an im-
perative language could also be a motivating factor.
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Transformations into a core language are in fact sometimes used in
definitions of functional languages in order to explain the behavior of
more complex constructs.

Just as programs represented in imperative languages are translated
into ssa form because this facilitates static analysis, optimization, and
proof of a given optimization’s correctness, it was popular around the
1980s to translate a functional language program into CONTINUATION
PASSING STYLE (CcPs). In CPS, control flow and argument passing is
made explicit. Every function is augmented with a further argument
that serves as the CONTINUATION. The function is then called with an-
other function that is to use the result of its computation as the contin-
uation argument. Rather than returning the result x of evaluating the
function to a caller, the function instead invokes the continuation with
x as the continuation’s argument. In compiling call-by-value languages,
translation into CPS has been proven to enable more transformations
than are possible in the source language.

However, since the translation to CPS is ultimately reversed during
code generation, recent compilers have moved to carefully performing
some of the transformations developed for use with CPS directly in
the source representation. CPS is still used locally for some optimiza-
tions in a process known as “contification” or local CPS conversion.
This can be used alongside ssa to enable further optimizations during
functional language compilation.

Graph representations of the program also play a bigger part in
some compilers. A large class of compilers build their back end around
graph representations of the program; reduction is performed in terms
of the graph. The development of such GRAPH REDUCTION machines
played an important part in making lazy evaluation feasible, since they
provide a ready way to conceive of substitution in reduction without
copying. If all terms are represented by a collection of linked nodes,

rather than copying the term to each location in order to substitute it,
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we instead make multiple links to the single original term. When one
of the substituted terms is reduced, all terms immediately share the
result: no reduction is performed more than once.

Some compilers employ typed intermediate languages. This allows
them to use the additional information provided by types throughout
compilation. Instead of simply performing type checking to ensure the
program is valid and subsequently ignoring types, the type of terms

becomes additional fodder for analysis and optimization.

14.6 THE MIDDLE END

Just as in imperative compilers, the middle end is where the most ef-
fort is expended. Optimization is the key to producing good code and
a good compiler. (Naturally, different kinds of optimization will be
required depending on your idea of good.) Compilers for functional
languages are typically the subjects and results of research. Different
compilers are frequently based around entirely different intermediate
representations and back ends, so work on optimization for functional
languages is much more balkanized than research on optimization for
imperative languages. Optimizations described in the literature are
generally described in terms of improvements of an existing compiler
in the context of a particular language, set of intermediate represen-
tations, and back end. It is not always clear which parts of this work
applies in general to functional language compilation, and which parts
are inextricable from the particular context in which they were devel-
oped.

While the particular optimizations that can be performed might dif-
fer from compiler to compiler, all compilers for functional languages
confront a set of common problems due to the features that mod-
ern functional languages offer. These problems are partially addressed

through enabling and performing specific kinds of optimizations and



14.6 THE MIDDLE END

partially through design of the back end. They can also be addressed
through extensions to the language itself that allow the programmer
to provide further information to the compiler.

Compiler-specific language extensions are not confined to functional
language compilers, of course. An imperative example would be a C
compiler adding support for an equivalent of the restrict keyword
added by the Cgg standard prior to the standard’s publication. The
restrict keyword is a type qualifier meant to be used with pointers.
It is used to declare that the object pointed to by the pointer will be
accessed only through the pointer. This shortcuts the need for the com-
piler to perform difficult alias analysis to determine whether this is
the case by allowing the programmer to advise the compiler that this
relationship between the pointer and the pointed to holds. More im-
portantly, this allows the programmer to declare that this restricted
relationship holds even when the compiler would be unable to infer
the relationship through analysis, which enables previously impossi-
ble optimizations.

Such extensions are not without peril. The restrict keyword also
provides one more way for C programmers to shoot themselves in the
foot. If an optimization relies on the fact that a pointer is declared
with the restrict type qualifier, but the relationship indicated by the
qualifier in fact does not hold, then optimization could introduce erro-
neous behavior into an otherwise correct program. The same difficulty
is a matter of concern for other extensions that provide information re-
lied on in optimization that cannot be verified independently through
analysis; at the same time, an extension that does not also extend the

potential for optimization would be redundant.
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Listing 14.1: Creating a closure

A closure is a function together with an environment providing
bindings for the function’s free variables. The binding used for
each variable is the one lexically closest to where the function is
defined. In this example, the variable n is free in the definition
of addNto. The closest definition of n is that made by makeAdder.
Thus, evaluating makeAdder 3 results in a closure containing the
function addNto and an environment in which n is bound to 3.

makeAdder n = addNto
where addNto m = n + m

14.6.1  Common Problems

Whether the compiler chooses to extend the language or not, it still

faces some common problems.

¢ First-class functions require the construction of closures (which
are defined below). A lazy evaluation strategy requires the cre-

ation of even more closures.

¢ The immutability required to preserve referential transparency
can require significant amounts of copying. For example, sort-
ing a list recursively produces a multitude of new lists. Lists can
be expensive to construct and manipulate, but they are used ex-
tensively in functional programming, as are algebraic data types

and pattern matching in general.

¢ Polymorphism is desirable, but it also requires that all argu-
ments be treated identically regardless of their type: no matter
whether an argument is an integer or a list, it has to fit in the

same argument box.

Closures and Suspensions

A cLOSURE is formed by taking a function definition and binding any
free variables to their existing definition in the closest enclosing (gen-

erally lexical) environment. The code in Listing 14.1 (p. 202) returns a
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closure that can be used to produce a function that always adds two

to its argument:

add2to = makeAdder 2 J

With this definition, evaluating map add2to [1, 2, 3] results in [3, 4,

5]. Note that the definition of the function addNto uses a variable n
that is not passed to it. This variable is defined in the immediately
enclosing environment of makeAdder. When makeAdder 2 is evaluated, n
is bound to 2 and a closure of addNto is returned wherein n is bound to
the value n had when the closure was created. Evaluating makeAdder 3
results in a closure where n is bound to 3. If there were no definition
for the free variable n in the function definition, it would be impossible
to produce a closure and the definition would be in error. This would
be the case if we attempted to define g x = x + y in an environment
without any binding for y.

A closure could at times be formed by partially evaluating the clo-
sure by directly substituting the definition, particularly in eagerly eval-
uated languages, but it is tricky to ensure this specialization of the
function takes into account the already available definitions and pre-
serves the semantics of evaluation of the unspecialized function. In-
stead, a closure is most often implemented as an unevaluated function
together with its own environment of definitions. Only once all ar-
guments have been provided to the function will evaluation actually
occur. In this sense, a closure represents a frozen, or suspended, com-
putation: a promise to perform some evaluation once all arguments
are available to the function. Dealing with closures efficiently thus be-
comes an important part of enabling heavy use of higher-order func-
tions in programs written in a functional language — and any func-
tional language that encourages currying encourages frequent use of
higher-order functions.

Since lazy languages only evaluate a term when necessary, they

must make extensive use of suspended computations and only force
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their evaluation as needed. Optimizing the implementation of such
suspensions thus becomes an important part of optimizing a compiler
for a lazy language. Indeed, a common optimization is to introduce
STRICTNESS ANALYSIS, which attempts to eliminate the construction
of suspensions that will perforce be evaluated in the course of evalu-
ating the program. As an example, a request to display the result of
a computation requires that the entire computation be carried out to
produce the result. There is no question of some part of the result not
being required, since the entire result is supposed to be output. Such

a display function is strict in its argument.

Referential Transparency and Copies

The immutability required to preserve referential transparency can re-
quire significant amounts of copying. For example, sorting a list re-
cursively produces a multitude of new lists. This has nothing to do
with strictness. The solution to this problem is a combination of de-
forestation, also called fusion, and update analysis. DEFORESTATION
attempts to eliminate data structures that are created only to be imme-
diately consumed. This can be considered to some extent as a special
case of UPDATE ANALYsSIS, which attempts to discover when func-
tions accepting a data structure and returning a modified copy of that
data structure can be implemented so that they instead update the
original data structure without producing a copy. This can be done
whenever the original data structure will not be accessed in the fu-
ture. With this requirement satisfied, the in-place, destructive update
can be done without destroying referential transparency, since there
are no remaining references through which the update of the original
data structure could be discovered. Mutable references, such as are al-
lowed by the ML family of languages, might seem a way to allow the

programmer to directly intervene to solve this problem, but mutable
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references begin to return us to the complications of static analysis that
we encountered when discussing imperative languages.

Pattern matching plays an important part in modern functional lan-
guages. A naive implementation of pattern matching that goes through
the patterns case by case, as we described the process of pattern match-
ing earlier, is needlessly slow. More sophisticated implementations (us-

ing, for example, decision trees) can do much better.

Polymorphism and Boxes

In order for a function to be parametrically polymorphic, it must be
able to accept any argument, regardless of the argument’s type. For
this to work, every argument must be superficially similar. Polymor-
phism forces a single, standardized representation of all arguments.
Frequently, this takes the form of a pointer to heap-allocated struc-
tures with a common layout. Even arguments that could be directly
represented, such as integers or floating point numbers, end up being
allocated on the heap in order to look like all the other arguments.
Such a common representation is called a BOXED REPRESENTATION
because we can think of putting every data type into a box that makes
them all look the same. To actually use the data, we must unbox it;
when we are done, we must box it again. This boxing can be expen-
sive. The way to lessen this expense is to work at relaxing the con-
straint that required boxing in the first place by allowing functions
to deal with UNBOXED arguments. Such arguments are cheaper to
allocate and cheaper to work with and can lead to significant gains
in efficiency. Enabling manipulation and use of unboxed arguments,
and introducing an analysis that can discover when it is possible to
substitute unboxed data for boxed data, is an important optimization
for languages with many polymorphic functions. Unboxed types can

even be added directly to the language, which allows the programmer
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to directly manipulate unboxed types when efficiency is of particular

concern.

14.7 THE BACK END

The middle end used analysis to optimize the representation of the
program in preparation for translation to run on a von Neumann ma-
chine. The back end is responsible for effecting this translation. This
translation consists in bridging the functional model of computation
and the imperative model of computation. Conceptually, this is done
by simulating functional computation-by-reduction in an imperative,
von Neumann setting.

This simulation is typically performed by an ABSTRACT MACHINE.
There are two criteria by which an abstract machine for a functional

language should be judged [108, p. 184]:
* How well it supports the functional language.
* How effectively it can be mapped onto a real machine.

The ultimate goal of the back end and of the abstract machine is
code generation. This can take the form of either code native to the
given platform, or it can take the form of very low-level C code. When
C code is the target language, it is in order to use the C compiler as a
portable assembler. While the native assembly language can vary sig-
nificantly between different platforms, the C language does not. Gen-
erating C code makes it easier to port the compiler to a new platform,
since almost every platform will already have a working C compiler.
Code produced in this way cannot compete with directly generated
native code, but such a comparison misses the point of using C as tar-
get language. This choice is motivated by a desire to have a working

compiler on as many platforms as possible as soon as possible. Native
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code generation can always be added later, but code generation via C

allows the compiler to produce code for unanticipated platforms.

14.7.1  Types of Abstract Machine

A large variety of abstract machines has been proposed. We can roughly

divide these machines into three kinds:
e stack machines
¢ fixed combinator machines

¢ graph reduction machines

Stack Machines

Stack machines, such as the Functional Abstract Machine (FAM) [28]
and the SECD (stack, environment, code, dump) machine [70], work by
compiling the low-level intermediate language into stack instructions.
The instruction set is customized to the functional language. Use of
stack instructions makes it simple to apply peephole optimization to
refine the stack code produced.

Stack machines are characterized by their representation of the code
as stack instructions. They might also use a variety of other stacks:
environment, control flow, and data. The environment stack stores en-
vironments of bindings mapping names to values. The control flow
stack keeps track of the order of operations and is used to resume
evaluating an expression after a detour to evaluate one of its subex-
pressions. The data stack is where data structures are allocated and
stored and provides a way to access these structures, as well. Some of
these other components might also be implemented as stacks in other

kinds of abstract machines.
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Fixed Combinator Machines

Fixed combinator machines eliminate the need to maintain an environ-
ment by transforming the entire program into a fixed set of combina-
tors applied to known arguments. The bindings that would have been
provided by the environment are instead made explicit through func-
tion application. The chosen set of combinators varies from machine
to machine; a frequent subset of the chosen combinators are the S, K
and I combinators, which are defined in terms of the lambda calculus

as

S = Axyz.xz(yz)
K = Axy.x

I=Ax.x

The elimination of the environment is elegant, as is the very small num-
ber of primitive routines (one for each of the chosen combinators), but
the code size can grow tremendously, and, since each combinator only
performs a minimal amount of work, it requires the evaluation of many
small combinators to accomplish anything. Thus, fixed combinator ma-
chines have a high functional call overhead. Adding more combinators
that do more work to the fixed set of combinators can ameliorate this
somewhat, but as different sets of combinators are more appropriate

for different programs, the problem cannot be eliminated.

Graph Reduction Machines

Graph reduction machines conceive of the program as a graph of func-
tion, argument, and application nodes. Reduction takes place in terms
of the graph at application nodes; the result of evaluation replaces the
application node. The final value of the program is obtained by reduc-

ing the graph to the root node.
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Where stack machines used an environment, and fixed combinator
machines used transformation into a fixed set combinators, graph re-
duction machines take a third route: they transform the entire pro-
gram into a set of combinators by what is known as LAMBDA LIFT-
ING [37, 43, 63]. These combinators are extracted from the program
itself by introducing additional abstractions over the free variables of
function definitions. As in the fixed combinator machines, an environ-
ment is unnecessary, since binding via lambda replaces binding via
the environment. But the use of these custom combinators, known as
SUPERCOMBINATORS [59], avoids the problems associated with the
fixed combinator machines.

Graph reduction machines naturally implement a call-by-need re-
duction strategy. Substitution occurs by substituting a pointer to the
same, shared node. Whenever that node is evaluated and updated, all
pointers immediately have access to the updated value. Thus, every
node is reduced at most once; this at-most-once property is known as
FULL LAZINESS.

Unfortunately, building and maintaining the graph structure is ex-
pensive. Since reduction is modeled in terms of the graph, the program-
as-graph ends up being interpreted at runtime, which also limits ex-
ecution speed. Because of the problems posed by conventional archi-
tectures for these abstract machines, there were attempts to implement
hardware that provided direct support for graph reduction (sometimes
extending support to parallel graph reduction).

Compiled graph reduction machines work around this problem in
order to achieve good performance on conventional architectures. They
replace an explicit graph structure with code that acts as if the graph
were present. They thus preserve the conceptual simplicity afforded
by viewing the program as a graph while avoiding the expense of
building and updating a graph data structure. A variety of refinements

and variations on this theme are possible [26, 62, 79, 99, 108, 115].
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14.7.2 The Abstract Machine Design Space

We have briefly described abstract machines in terms of several differ-
ent ways they encode the functional program and evaluate it. Another
way to describe an abstract machine is in terms of the decisions made
in its design. This requires giving an example of the other choices that
could have been made.

As you might have deduced from our earlier discussion, the two
most important choices are the evaluation strategy implemented and
the way the environment is handled. The major decision for evaluation
strategy is between call-by-value and call-by-name. Call-by-need eval-
uation is merely a variation on call-by-name that implements laziness.

There are many variations on these principal strategies in terms of
how precisely they are implemented. The primary variations concern
how function application is performed. The two options go by the
suggestive names of push/enter and eval/apply. In the push/enter
approach, a function call f x y is evaluated by pushing x and y on
the stack and entering the code for f. It is up to f itself to determine
whether sufficient arguments are available; if insufficient arguments
are provided, the function returns a closure; if sufficient are available,
it completes the application and returns the result. In the eval/apply
model, the caller determines whether sufficient arguments are avail-
able and controls the application process. Both approaches can be used
with any evaluation strategy; eval/apply has historically been favored
for call-by-value and push/enter for call-by-name, but research [78]
suggests eval/apply is preferable in both cases. Surprisingly, this con-
clusion is reached, not on the basis of a difference in performance (the
differences are negligible), but in a reduction in the complexity of the
compiler that accompanies use of eval/apply.

Environment management can be done using explicit environments

or via combinators. If explicit environments are used, there is a choice
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of the type of environment: should definitions be shared or copied?
That is to say, when entering an enclosing lexical scope, should the
closure direct accesses to free variables to enclosing closures, creat-
ing something of a tree-like structure, or should each closure receive
copies of its needed values? Sharing eliminates time spent copying but
increases the time spent traversing data structures to reach the point of
variable definition; copying requires time and space be spent making
copies, but each function closure then retains only needed bindings
(there is no reason to copy over unneeded ones) and access to those
bindings is possible in constant time.

If copying is chosen to implement environments, there is one more
question: when should the copy be performed? Different abstract ma-

chines have different answers to this question. Some possibilities are:
e when a function is entered;
* when a closure is built and again when it is entered; and
¢ only when a closure is built.

We will not discuss these further; the interested reader is referred to an
article by Douence and Fradet [42] and associated technical reports [40,
41].

We mentioned that call-by-need can be seen as a variation on call-
by-name. Call-by-name necessitates sharing and updating of closures.
This updating could be performed in two ways, either by the caller
or by the callee, but all implementations use callee-update since this
prevents every caller of the same callee from having to test the callee
to see whether it has been evaluated or not. Instead, the callee, if not
previously evaluated, sparks its evaluation and updates itself with the
result. The callee of course also returns the result to the caller that

forced its evaluation.
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Graph reduction machines can be seen as implementing these same
strategies but in terms of graphs. The details of transformation be-

tween the two perspectives are beyond the scope of this discourse.

148 BIBLIOGRAPHIC NOTES

Garbage collection is an interesting topic in itself comprising a variety
of algorithms with a variety of purposes and no apparent optimum
approach. The state of the art as of 1995 is described in a textbook
by Jones and Lins [64]. An alternative to garbage collection is region in-
ference, which is a static analysis that enables the compiler to hardcode
at compile-time the work usually performed by a dynamic garbage col-
lector [126].

McCarthy [81] describes the creation of the first Lisp interpreter. The
first ML interpreter was implemented in Lisp [see 47, footnote 5]. By
the start of the 1990s, Lisp offered a sophisticated programming envi-
ronment [72]. Cardelli [28] describes how an ML compiler was devel-
oped based on the “implementation folklore” of various Lisps rather
than using the style advocated by compiler textbooks directed towards
imperative languages. The incremental, on-the-fly compilation used by
Lisp systems and some interactive compilers for functional languages
is also known as JUST-IN-TIME COMPILATION and has its own inter-
esting history [12]. Virtual machines are also an active topic of research
in themselves [119], as is how they relate to functional languages and
abstract machines [1, 2, 3, 4, 36].

A brief history of CPS is given by Flanagan, Sabry, Duba, and Felleisen
[44]. While they suggest the argument over whether compiling primar-
ily through CPS is worthwhile has been settled against CPS, Kennedy
[66] at least believes CPS provides distinct benefits in simplicity com-
pared to other, later intermediate representations. The best resource on

CPS, at least as of the early 1990s, is Compiling with Continuations [10].
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Speaking of intermediate representations, we should note that ssa can
actually be seen as functional programming [10].

The suspensions created to represent “frozen” computations during
the compilation of lazy languages are also known as THUNKS [60].
Thunks can be used to simulate call-by-name within a call-by-value
evaluation strategy [50]. Strictness analysis, which can be used to avoid
the creation of thunks, can be seen as a case of order of evaluation
(or “path”) analysis [21]. Strictness optimizations can cause surprising,
unwelcome behavior [20].

Deforestation can be performed via so-called short cuts [46]. Oppor-
tunities for deforestation can be recognized through higher-order type
inference [30]. The elimination of unnecessary construction of interme-
diate data structures is addressed more generally by stream fusion [33].
Update analysis is discussed by Bloss [22]. Another surprising source
of optimizations for functional aggregates are loop optimization tech-
niques developed for use in scientific computing [9].

Call-pattern specialization [99] can be used to reduce the cost of the
pervasive use of algebraic data types and function definition through
pattern matching. Efficient pattern-matching nevertheless requires some
finesse [73]. Unboxed representations and their benefits are discussed
by Peyton Jones and Launchbury [106], Thiemann [124].

We did not discuss the problem of space leaks [134] and its partial
solution through black-holing [65] for graph reducers. Black-holing
makes it impossible to back up in the event of an interrupt or other
exception, requiring another solution [115] if we wish to support in-
terrupts while avoiding the space leaks otherwise prevented by black-
holing.

Douence and Fradet [42] describe an overarching framework for de-
scribing and decomposing abstract machines. Our summary of the
abstract machine design space drew heavily on their work. Another

view [3] of abstract machines makes a technical distinction between
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abstract machines, which operate directly on lambda terms, and vir-
tual machines, which operate on lambda terms compiled into their
own instruction set. It is also possible to go between functional evalua-
tors and abstract machines that implement the evaluation strategy via

a state transition system [2].



CASE STUDY: THE GLASGOW HASKELL COMPILER

The discussion of the previous chapter was limited to generalities. We
now look at a specific implementation of functional compilation. The
Glasgow Haskell compiler is an actively developed, mature compiler
for the lazy functional language Haskell. It implements numerous ex-
tensions to the standard language and provides a variety of additional
tools and libraries, many of which are used in developing the compiler
itself.

We gave a brief history of the Haskell language towards the end of
Chapter 13, HIsTORY. The Glasgow Haskell Compiler (GHC) is today
the principal Haskell compiler. It is used both to produce compiled
Haskell programs doing real work as well as for research into func-
tional languages and their implementation. GHC is written primarily
in Haskell itself, though some parts (including most of the runtime
system) are implemented in C.

Compilers are very complex programs made up of a number of inter-
acting, complex parts. We make no pretense of describing the Glasgow

Haskell compiler in toto. Our study is guided by two questions:

e How does GHC use the fact it is compiling a functional language

to its advantage?

* How does GHC solve the problems a functional language poses

for compilation?

Answering these questions entails looking at specific optimizations
enabled by functional languages and optimizations required to effi-

ciently compile functional languages. All optimizations are carried out
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using specific intermediate representations, so we will describe the in-
termediate representations used in these compilers. In the course of
discussing solutions to problems introduced by functional languages,
we will also briefly discuss GHC’s implementation of garbage collec-
tion and pattern matching. We will also look more closely at how it
transforms the source functional program into something executable

in the target, von Neumann environment.

15.1 INTERMEDIATE REPRESENTATIONS

The Glasgow Haskell compiler uses several progressively simpler in-
termediate languages. We can roughly equate each language with a

certain phase in compilation:
* The front end uses a representation of Haskell itself.

¢ The middle end uses a much simpler core language called, un-

surprisingly, Core.
* The back end uses the STG and Cmm languages.

The first intermediate representation is produced and used by the
front end. This representation is a representation of Haskell itself using
data types and constructors. GHC takes the unusual step of perform-
ing type inference using what is fundamentally the source language
rather than a desugared, simpler, core language. This makes it easy
for the compiler to report errors in terms of the code provided by the
programmer.

The Haskell representation is then desugared into a very simple core
language called core. Core encodes values alongside their types, and
so optimizations using the Core representation can take advantage of
type information. This type information includes information on type

equality constraints and coercions. Further details do not concern us,
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but can be found in an article by Sulzmann, Chakravarty, Jones, and
Donnelly [123].

Possibly one of the greatest advantages of carrying through types
into the intermediate language, however, is not that they become avail-
able for optimization, but that they make it easy to catch errors intro-
duced during development, since such an error is likely to introduce
an erroneous term that can be caught by a simple type check. As all
optimizations are performed as Core-to-Core transformations, and op-
timizations can interact in complex ways, error recognition by cheap
type checking is very helpful.

The back end uses the STG (for Spineless Tagless G-machine) lan-
guage. Core is transformed into STG through an intermediate step.
The Core representation is first transformed into a Core representation
of the program that is closer in spirit to STG. Only after this transfor-
mation is the Core representation transformed into an STG representa-
tion.

STG is the language of an abstract machine, the Spineless Tagless
G-machine. This machine was designed for efficient translation into
imperative code executed by a conventional, von Neumann computer.
However, GHC does not translate STG code directly into native code.
It instead translates it into Cmm. Cmm is GHC’s implementation of
C-- (read “C-minus-minus”; see Peyton Jones, Ramsey, and Reig [110]
for a description), a language that closely resembles C but is somewhat
simpler and lower-level.*

Once the program is represented in Cmm, it can be compiled to
native code in two different ways: directly, or through C. (The choice
is the user’s, though the default is direct generation of native code

from the Cmm representation.)?

GHC neither uses nor requires all capabilities of C--, and so Cmm does not imple-
ment those unneeded capabilities. Other small differences combine to make Cmm a
dialect of C--, which is itself a moving target. Current information on C-- is available
from http://www.cminusminus.org/.

Another transformation that would turn the generated Cmm into continuation pass-
ing style Cmm code is currently under development.
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Direct code generation proceeds by transforming the Cmm represen-
tation into a data type representation of assembly instructions. Where
the front end began by transforming the source code into a data type
representation of Haskell code, the back end finishes by printing out a
representation of the data type encoding of the assembly instructions.
The resulting code can then be assembled into an object file.

Compilation by C is messier, less elegant, and appears to be depre-
cated. Since Cmm is virtually a subset of C, it is not difficult to generate
something that can be compiled as a C program. This is compiled with
any available C compiler. Since the program is not really a C program
but a representation in C of a Spineless Tagless G-machine program,
some of the assumptions made by the compiler are erroneous and re-
sult in suboptimal code. The assembly language code produced by the
C compiler is thus postprocessed as a last optimization. The primary
effects of this postprocessing are the removal of many unneeded regis-
ter save and restore sequences and the rearrangement of the memory
layout of the assembly code. This results in a corresponding rearrange-

ment of the object file produced when the assembly code is assembled.

15.2 GARBAGE COLLECTION

GHC implements generational garbage collection. Generational garbage
collection is based on the assumption that “young” objects — those that
have been recently allocated — are more likely to have died than older
objects. Generational garbage collectors thus focus their garbage col-
lecting efforts on younger objects. The age of an object is described in
terms of generations. The garbage collector assigns all allocated objects
to one of a set of generations. A newly created object belongs to the
first generation. During collection, pointers in objects of those older
generations that are not being collected are used as roots to determine

which objects of the generations undergoing collection are live. Objects
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that survive a certain number of collections are promoted to the next
generation.

Garbage collection is invoked frequently to keep heap use under
control; since most garbage collections only examine younger gener-
ations, such minor collections are inexpensive. When a minor collec-
tion will not suffice to reclaim sufficient memory, a major collection is
performed using a mark-compact algorithm: this leads to all genera-
tions being examined, so that storage allocated to older objects that, by
virtue of their age, had survived collection past the end of their lives
is reclaimed.

GHC’s garbage collector is of the so-called “stop the world” vari-
ety. During garbage collection, only the garbage collector is active. All
computation ceases. This plays a surprisingly important role in ensur-
ing that GHC interfaces well with the outside library (GMP, the GNU
Multiple-Precision Library) that it uses to provide arbitrary-precision
arithmetic. The arithmetic library is implemented in C; if garbage col-
lection occurred while a library function was being executed, garbage
collection could relocate the data the function was was working with
out from under the function’s pointer to that data. However, because
the garbage collector requires that the world be stopped, it is only in-
voked when all running threads have reached a sequence point; since
none of the functions provided by this library have such a stopping

point, they cannot be interrupted by the garbage collector.

15.3 PATTERN MATCHING

Pattern matching is in fact a core part of the Core and STG repre-
sentations. Even conditional expressions are handled through pattern
matching: if B then X else Y is written using a case expression as case

B of {True -> X; False -> Y}. B is called the expression scrutinized

219



220

CASE STUDY: THE GLASGOW HASKELL COMPILER

by the case expression. In the Core and STG languages, case analysis
forces evaluation of the expression scrutinized by the case analysis.

Expression evaluation is a necessary part of pattern matching in
these intermediate languages. To explain why, we must describe how
data type declarations are treated. As discussed earlier, a declaration
such as data Tree a = Leaf a | Branch (Tree a)(Tree a) creates an al-
gebraic data type with two constructors, Leaf and Branch. The ordering
of these declarations is considered significant in Core and STG, be-
cause each constructor is assigned a discriminator integer, beginning
with o and increasing by one for each constructor declaration. Thus,
Leaf would be assigned o and Branch would be assigned 1.

Pattern matching uses this discriminator to decide which branch of
the case expression should be chosen. After evaluation of the scruti-
nized expression completes, its discriminator is examined; a jump is
then made directly to the corresponding branch of the case expres-
sion. The simplicity of this system is due to the Spineless Tagless G-

machine’s inbuilt support for algebraic data types.

15.4 OPTIMIZATIONS

All optimizations are performed as Core-to-Core transformations [109].
Some optimizations, such as strictness analysis and let-floating, re-
quire significant nonlocal analysis. Some can be done in the course
of several local simplification passes.

Some of these local simplifications are specified using a rewrite rule
syntax [105] that is available to all users of the Glasgow Haskell com-
piler. Others are more complex, such as function inlining. Inlining ba-
sically treats a function call as a macro; it replaces the call with an
instance of the body of the function. (There are, as always, some com-
plexities [103].) Inlining a function eliminates the need to perform a

pipeline-unfriendly jump to the code for the function during evalua-
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tion. The Glasgow Haskell compiler uses heuristics to determine when
a function should be inlined; it will also inline a function when the
programmer has specified through a source-code annotation that the
function should be inlined.

Strictness analysis [107] attempts to discern which expressions will
perforce be evaluated. The code can then be optimized to avoid the
costs of unnecessary laziness: no suspension need be created in the
first place for the expression, and so the expression will not need to
be forced and updated later. Thus, strictness analysis can be used to
avoid a fair amount of work.

The let-floating transformations are another class of non-local trans-
formations. Let floating describes the effect of the transformation: a let
or letrec binding is shifted from one place in the source code to an-
other. Shifting here should be understood in terms of depth within an
expression: within a lambda abstraction, the body of a branch of a case
expression, or the expression scrutinized by a case expression. There
are advantages and disadvantages to floating let-bindings both in and
out, as well as some local transformations that are generally helpful;
the specific application of let-floating to a given case is decided, as is
usual in optimizations, through some heuristic rules. Further informa-
tion on let-floating can be found in the article by Peyton Jones, Partain,
and Santos [104].

Of all these optimizations, strictness analysis is the only one we can
plainly categorize as an example of an optimization necessitated by the
inherent inefficiency of a lazy language. The rest of the optimizations
are little different from the code tuning transformations an imperative
compiler might perform using static single assignment form;* indeed,
the imperative optimization stalwart, common subexpression elimina-

tion, can also be applied to a Core program.

This analogy is more accurate than you might at first think; ssa can actually be
looked at as transforming an imperative program into an equivalent functional pro-
gram to ease analysis [11].
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15.5 GOING VON NEUMANN

The transformation that reroots the functional program in the impera-
tive, von Neumann paradigm is the transformation from the program’s
STG representation to its Cmm representation. Of course, by the time
the program has been transformed into the STG language, a signifi-
cant amount of analysis and optimization has been performed with
the aim of producing code that is more efficient (both in space and
time) within the von Neumann setting. Since all the “heavy lifting”
has been done using other, more complex representations, the actual
translation from STG to Cmm is fairly direct. That is not to say that it
is simple; there are many details concerning the precise memory lay-
out of a closure, the accommodation of unboxed types, and heap and
control flow management.

While we can identify the transformation from STG into Cmm as the
moment that the functional program becomes a viable imperative pro-
gram, this single aim influences the entirety of the compiler’s design.
There are many other compilers for many other functional languages,
all complex and all implementing their own approach to functional
compilation, but with this brief survey of the Glasgow Haskell com-

piler, we bring our discussion of functional compilation to a close.

156 BIBLIOGRAPHIC NOTES

Hudak et al. [58, §9] places the Glasgow Haskell compiler in the con-
text of other implementations of the Haskell language. The version of
GHC considered here is version 6.8.2. More information on GHC is
available from its website, http://haskell.org/ghc/. The GHC Com-
mentary, written by the developers for other developers and anyone
else interested in the compiler’s internals, is available at http://hackage.

haskell.org/trac/ghc/wiki/Commentary; it was very helpful in prepar-
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ing this chapter. The source code itself is also well-commented: if you
should wish to explore functional compilation in more depth by re-
viewing the code for a compiler, you could scarcely hope for a compiler
with better documentation.

The Spineless Tagless G-machine [101, 108] refines the Spineless G-
machine of Hammond [49], which itself is a refinement of Johnsson's
G-machine [62]. Around 2007, reconsideration of the tagless part of the
Spineless Tagless G-machine led to the introduction of tags indicating
whether or not a closure has been evaluated and, if so, the discrimi-
nator of its data constructor in order to reduce branch mispredictions
encountered during case analysis and cache pollution caused by un-
necessarily loading the info table of the closure. This work is described

by Marlow et al. [79].
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CONCLUSION

This chapter focused on the functional language family. After we in-
troduced the theory at its roots, we sketched the history of the func-
tional family, from early predecessors such as LISP and influential
non-functional languages such as APL to today’s mature functional
languages. Many approaches to compiling functional languages have
been advanced, and we discussed some of them and provided a some-

what more in-depth case study of an actual compiler.

¢ In Chapter 12, THEORY, we revisited the concept of type and ex-
plored some of its complexities. We then developed the lambda
calculus and introduced constants and types into its framework.
When we discovered this prevented us from employing recursive
definitions, we introduced a family of typed fixed point opera-

tors.

® In Chapter 13, HISTORY, we looked at the history of the func-
tional family through the lens of its influential languages. Among
the predecessors of today’s functional languages, we discussed
McCarthy’s LISP, Landin’s Iswim, Iverson’s APL and Backus’s
FP. We then turned to modern functional languages. After de-
scribing common defining features, we looked at the two pri-
mary branches of the functional family, the eager and the lazy
languages. Eager languages, such as ML, use what amounts to
call-by-value as their reduction strategy. Lazy languages, such
as those created by Turner and their successor of sorts, Haskell,

implement what amounts call-by-name.
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* In Chapter 14, COMPILING, we described in broad terms how

functional languages are compiled. Functional languages are pri-
marily a “sugaring” of the lambda calculus, and by first desug-
aring them, we reduce them to a simple, core language that is
only slightly more abstract than the lambda calculus itself.The
core language representation is then compiled into instructions
for an abstract machine of some variety, and it is this abstract
machine that runs the program: the compiled representation, in
some sense, encodes both the program and a virtual machine to

run the program.

In Chapter 15, CASE STUDY: THE GLASGOW HASKELL COM-
PILER, we looked at how the Glasgow Haskell compiler actually
compiles a functional language. This case study provided con-
crete examples in contrast to the generalities of our discussion

in Chapter 14, COMPILING.
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The body of this work is through. This epilogue reflects on what you
have just read about the functional and imperative families and offers

some thoughts on future developments.

LOOKING BACK

Imperative and Functional Languages

The models of computation that underlie both the imperative and func-
tional families were developed around the same time, but the develop-
ment of the von Neumann machine set imperative languages on the
path to ascendancy.

At first, these machines could be programmed only by manipulation
of their hardware. The development of software brought assembly lan-
guage, the prototypical imperative language, to the fore. Even today,
assembly language cannot be beat for the control over the underlying
machine it brings, but this control comes at great cost: in program-
ming time, and in portability. It takes a long time to write a substantial
amount of assembly code, and the code is then tied to the platform it
was written for.

In the 1950s, Fortran brought imperative languages to a higher level
of abstraction; later imperative languages brought more powerful ab-
stractions. Still, early Fortran remains, though primitive, recognizably
imperative. Within a decade, Lisp would be born. Lisp was an impor-
tant predecessor for today’s functional languages: Lisp made higher-

order functions available, and so one faces similar problems compiling
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Lisp as compiling today’s functional languages. But Lisp started as
Lisp and continues as Lisp: there is no mistaking Lisp code for any-
thing but Lisp code, and Lisp style is quite distinct from the style of
modern functional programming.

It was another decade before ML made its debut in the 1970s. It
started as an interpreted language without the concept of algebraic
data types, which was borrowed later from another language. The lazy
branch would not begin to bear fruit until the 1980s. Over the next two
decades, the functional language family would grow into its modern
form.

In order to have any hope of displacing assembly as the dominant
programming language, Fortran had to be fast, and it was designed
from the outset with speed in mind. Lisp grew up with artificial in-
telligence and was adopted because it was very well-suited to pro-
gramming in that domain. It competed on features and the power of
its abstractions, not on speed. It pioneered garbage collection, but it
took decades of research to get past the “stop the world” effect that
scanning the heap and scavenging useful data can cause if done with-
out sufficient sophistication. Since many application domains for pro-
gramming languages demand speed, Lisp was only ever a marginal
language outside symbolic processing. The imperative family would
continue to look on garbage collection as an expensive and unneeded
luxury until languages developed for object-oriented programming
showed that it can bring new levels of programmer productivity.

ML grew out of work on a theorem prover, and it too was devel-
oped (using Lisp, no less) to serve its application domain. Its type
system could provide guarantees for theorem proving that a weaker
system could not. Significant work was required to make both Lisp
and ML run decently fast on “stock hardware.” Partly for this reason,
many persons researched alternative computing architectures meant

to support such languages directly, just as the von Neumann architec-
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ture naturally supports programs written in imperative languages. But
stock hardware eventually won out, and it was only in the 1990s that
optimizations were discovered to make lazy functional languages at all
competitive with compiled imperative languages on stock hardware.

The bottom line, for all programming languages, is the machine they
must eventually run on. This has been a blessing for imperative lan-
guages (at least when uniprocessors were the standard) and a curse for
functional. Functional languages also suffer from requiring of the pro-
grammer a fundamentally different style of programming than other
kinds of languages.

Backus’s criticisms of imperative languages, leveled during his Tur-
ing award lecture, continue to be valid. Imperative programming is
still not high-level enough — to use Backus’s phrase, it still amounts to
“word-at-a-time programming” — and many of the dominant impera-
tive languages continue to require programmers to supply redundant
type annotations. This is ameliorated to some degree by the rise of
dynamically-typed scripting languages, some of which (Groovy, Bean-
shell, Pnuts, Jython, and JRuby, for example) are implemented on top
of the very platform designed to host the more heavy-weight Java, but
dynamic typing gives up the benefits of static typing offered by func-
tional languages.

Functional programming languages stand in stark contrast to imper-
ative languages. The contrast might be too severe: their strangeness
might put off more programmers than it attracts. It requires a signifi-
cant investment of time and effort to transition from imperative to func-
tional programming, especially since many of the techniques learnt in
an imperative setting cannot be transferred directly to the functional,
including even common data structures.

Today’s functional programming languages have finally begun to
overcome the slowness inherent in simulating 3-reduction on a von Neu-

mann machine, but Backus’s primary criticism of them was not based
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on their being slow, but on their not being “history sensitive.” They
seem to have no way to store information from one run of the pro-
gram to the next; the lack of state cripples their usefulness. Backus
rightly pointed out that this has been a major source of trouble; he
gave the example of pure Lisp becoming wrapped in layers upon lay-
ers of von Neumann complexity.

Today’s functional languages have tried to solve the problem of state
either by limiting its use and making it explicit, in ML via reference
cells and in lazy languages through either monads or streams. The ML
concept of reference cells is virtually identical to the concept of a vari-
able in imperative languages. We will not say anything of monads here.
Streams can be used in lazy languages to represent interaction with the
world outside: the program is provided with an infinite stream of re-
sponses as input and produces an infinite stream of requests. Since the
language is lazy, it is possible to avoid evaluating any input responses
until a request has been made, such as to open a file. This often leads
to “double-barreled” continuation passing style, where one barrel is
used if the request succeeds and the other is used if the request gar-
ners an error response. These solutions avoid layers of von Neumann

complexity, but at the cost of a different variety of obtuseness.

Imperative and Functional Compilers

Imperative and functional compilers have no trouble with lexing and
parsing. It’s in the middle and back ends that problems present them-
selves. Here, they must go head to head with the problems inherent in
their languages.

Imperative languages make extensive use of pointers and other aliases
and frequently reassign names (variables) to different values. This com-
plicates analysis of data flow in the program and limits the optimiza-

tions that can be performed. Imperative compilers have historically
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Listing 16.1: A tail-recursive factorial function

fac n = fac’' n1l
where fac’ 1 accu accu
fac’ n accu = fac’ (n - 1) (n*xaccu)

had difficulty handling recursion, as it is difficult to tell when a given
recursive call can reuse the same stack space rather than requiring allo-
cation of a new stack frame. Recursive calls that pass all needed infor-
mation to the function itself for the next call do not require allocation
of a new stack frame, as the return value will have been computed by
the time the recursion bottoms out. This kind of recursion is known as
TAIL RECURSION. Listing 16.1 on page 231 gives a common example
of this: a version of the factorial function that makes use of an accu-
mulator argument to store the in-progress computation of the final
value. The function fac serves to hide this accumulator function from
the user; it simply calls the actual worker function with its argument
and the initial value of the accumulator.

Imperative languages also have difficulty dealing with concurrency
and parallelism. It is here that the von Neumann bottleneck becomes
most apparent. The reliance programs written in imperative languages
have on constant access to a common store leads, in a concurrent set-
ting, to problems with too many threads needing access to the same
part of the store. Locking mechanisms can keep this model workable,
but they require a significant amount of trouble on the programmer’s
part.

Functional languages have their own problems. The most obvious
ones boil down to the mismatch between their computational model
and that of the machine their programs must run on. It is hard to carry
out reduction efficiently. The necessity of closures leads to a significant
amount of overhead for running programs and a significant amount of
added complexity in the implementation of compilers for functional

languages.
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Functional programmers’ extensive use of lists and similar data struc-
tures can also lead to insufferably slow code without optimization. Ei-
ther the programmer must be very careful and aware of the code that
will be produced by the compiler for a given function, or the compiler
must perform clever optimizations. Lazy languages only complicate
this with their unpredictable evaluation order. Slight differences in the
way a function is written can lead to completely different time and
space complexities. Lazy languages also require the development of
strictness analyses and associated optimizations.

Purity can in fact be considered a burden from the compiler’s point
of view. Referential transparency simplifies analysis and transforma-
tion, but it also necessitates a new class of optimizations. Update anal-
ysis attempts to discover when a given reference will never be used and
reuse its associated data structure. Operations must be implemented
such that the greatest amount of each data structure possible is shared
and reused, lest space be wasted. For lazy languages, a new class of
problems, space leaks, rears its ugly head, surprising programmers
and leading to ad hoc analyses and optimizations meant to squash
some of the most egregious examples.

Needless to say, work on compiling both functional and imperative

languages continues.

LOOKING FORWARD

Functional languages are growing up. They are beginning to see in-
creasing use in industry and increasing interest among programmers.
They also hold out promise as a way to deal with the rise of ubiquitous
symmetric multiprocessors, which brings the problems of concurrent
programming out of scientific and network programming and into pro-

gramming in general.
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Functional languages also continue to influence imperative languages.

Java brought garbage collection into the mainstream. Several impera-
tive languages, including Microsoft’s C#, now allow anonymous func-
tions; the programming language Python borrowed list comprehen-
sions from Haskell; the spirit of declarative programming, if not explic-
itly functional programming, shows through in the language-integrated
query (LINQ) facilities added to the .NET platform. Functional lan-
guages have been implemented for both the Java virtual machine (Scala)
and Microsoft’s .NET platform (F#, developed and promoted by Mi-
crosoft itself).

Functional programming, and declarative programming in general,
appears to promise increased programmer productivity. As program-
ming time continues to become the limiting factor in what is doable
in software, this could lead to increasing adoption of functional lan-
guages. At the same time, imperative languages have begun to assume
more elements of functional programming. It is possible that some-
thing like Objective Caml or Microsoft’s F# will become the dominant
programming language in the next couple of decades.

These families are merging in some ways, but they also continue to
develop in their own peculiar ways. Object-oriented programming has
led to aspect-oriented programming; there is continuing research in
the functional programming community on more powerful type sys-
tems, including those embracing dependent types and observational
type theory. There are also attempts to extend functional languages in
the direction of logic languages.

The families of programming languages continue to diversify, branch
out, and join together. Their fortunes also change as new languages
grow in popularity and old ones fall out. Old languages are some-
times made new again through a revised definition or new extensions

that breathe life back into them. These are exciting times.
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SUGGESTIONS FOR FURTHER RESEARCH

This thesis touched on a wide variety of subjects, from computer ar-
chitecture to formal language theory and automata, parsing, optimiza-
tions, imperative and functional languages, the lambda calculus and
type theory. Each of these subjects has already had much said about it.
References to related work have been given in the bibliographic notes
at the end of each chapter.

If paradigms have captured your fancy, you might want to investi-
gate a paradigm we did not have time to explore, logic programming.
This paradigm is exemplified by the language Prolog. Work is ongoing
to make constraint programming, an offshoot of logic programming, a
viable paradigm. We mentioned attempts to blend functional and im-
perative features in a single language; there have also been attempts to
create so-called functional logic languages, such as Curry.

Work to date on virtual machines for functional languages has ap-
proached them from a formal point of view. There is a significant body
of literature treating virtual machines in themselves that explores op-
timizing and improving them. Applying this literature to the virtual
machines used with functional languages could perhaps yield interest-

ing results.

BIBLIOGRAPHIC NOTES

Algebraic data types were borrowed by ML from Burstall’'s Hope [27].
We referred frequently to Backus’s influential 1978 Turing award lec-
ture [13].

Functional languages have seen significant use in industry. Develop-
ment of Objective Caml is funded in part by a consortium including
Intel, Microsoft, Jane Street Capital [91], and LexiFi; the last two com-

panies are involved in trading and finance. Hudak et al. [58] give a
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list of companies using Haskell along with descriptions of how they
use the language in addition to examples of the language’s impact in
higher education. Wadler* maintains an extensive list of applications
of functional programming. Appel! keeps up a smaller list of imple-
mentation work done using ML. Wadler [135] provides an insightful
analysis of why functional languages are not used more.
Observational type theory [8] is an interesting and powerful idea,
while dependent types are powerful enough to express a variety of
concepts that must otherwise be built into a language or done with-
out [7, 84]. Meijer has worked to introduce concepts from functional
programming into the imperative programming world, and he pro-

vides an excellent overview [86] of this work.

* “Functional Programming in the Real World,” http://homepages.inf.ed.ac.uk/
wadler/realworld/.

1 “Implementation work using ML,” http://www.cs.princeton.edu/~appel/smlnj/
projects.html
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