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A B S T R A C T

Computers operate at a very low level of abstraction. People think in

terms of higher-level abstractions. Programming languages let people

describe a computation using higher-level abstractions in such a way

that the description can be translated into something a computer can

execute. This translation is performed algorithmically by a program

called a compiler.

This thesis looks at how a compiler carries out this translation for

two very different types of programming languages, the imperative

and the functional. Imperative languages reflect the concept of com-

putation that is built into modern von Neumann computers, while

functional languages conceive of computation as a process of sym-

bolic rewriting. The functional model of computation is utterly differ-

ent from the von Neumann model, but programs written in functional

languages must ultimately run on von Neumann machines.

The thesis focuses throughout on optimizing program representa-

tion for execution on modern von Neumann computers. A case study

of the Glasgow Haskell compiler provides a concrete example of func-

tional language compilation.

Dr. Karsten Henckell

Division of Natural Sciences
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I N T R O D U C T I O N

Computers and Programs

Computers are everywhere. Their rapid development, penetration into

more and more aspects of our daily lives, and increasing effect on our

world are the subjects of rumor, discussion, and daily news. What com-

puters can do is simple: we can capture the essential elements of a

computer in an abstract machine whose description takes up maybe

ten pages. Within that concise, abstract specification hide volumes of

details necessary to bring to life the efficient machines that are the won-

der of our time. Computers do very little, but they do it extraordinarily

well.

With computers came programming languages. The computer itself

supports only a rudimentary, primitive language. This language de-

scribes everything in terms of the computer’s hardware. It provides

very few abstractions that hide these implementation details. The de-

velopment of higher-level languages that support a much richer set of

abstractions has been essential to realizing the potential of the com-

puter.

The term program is overloaded with meanings. It can refer to a

computer-executable file, a specific application that can run on a vari-

ety of computers using a variety of computer-specific executables, or

the code written in a programming language that is meant to become

one of these other sorts of programs.

The concept that hides behind these different uses is that of the pro-

gram as an idea of a computation, which could be something as ab-

stract as “find derivatives of polynomials.” In reifying this idea, one

must make many implementation decisions. What algorithms should

1



2 introduction

be employed? How should we represent the information we are work-

ing with? In answering these questions, we draw on other, more ele-

mentary programs.

But, eventually, one must commit to a form for these programs, some

sort of concrete representation. In their most authoritative form, these

representations consist of executable specifications of the computation:

“code” written in some language that can be made to run on a com-

puter. Languages with a richer set of abstractions – higher-level lan-

guages – are a natural choice for the concrete representation, as they

admit a more direct translation from the abstract idea.

A Tale of Two Stories

But, in the end, computers still speak computer, not these other, more

human- and idea-friendly languages. The story of how a program rep-

resented in a higher-level language is transformed into a representa-

tion that a computer can not only carry out but that is well-suited to

this purpose is an amazing, rich, nuanced story. The architecture of

the computer determines whether a representation is well-suited for

execution by it or not, and so this plays a part in this story. The ab-

stractions provided by the higher-level language determine what sorts

of transformations must be performed, so these too play a part in the

story.

This story is the story of the compiler, the program that is respon-

sible for carrying out the translation from higher-level language to

machine language. It is also the central story of this thesis. We tell it

by describing the major players: the computer, the compiler, and the

languages. We discuss them, in fact, in roughly that order. It might

seem backward to talk of compilers before languages. We actually as-

sume throughout that you have at least a basic reading knowledge

of a programming language such as C or Java, though we also pro-

vide analogies to natural language (such as English) where possible
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in our discussion of compilers. Ultimately, we talk of compilers before

languages because the job of a compiler is roughly similar for all lan-

guages, but the languages themselves differ in interesting ways that

have a significant impact on the specifics of their compilers.

The birth, life, and death of programming languages also make for

fascinating reading.∗ New languages build on and refine older lan-

guages while introducing novel ideas of their own. We can even talk

of programming language genealogy and draw out family trees.†

Two of the oldest and most prolific trees belong to the imperative

and functional families of programming languages. The abstractions

offered by these families are sometimes quite similar, but the over-

all combination of abstractions differ in significant ways. These dif-

ferences are truly fundamental: the two trees are rooted in different

notions of the fundamental process of computation.

These notions are embodied in two different formalisms, the Turing

machine and the lambda calculus. The universal Turing machine, a

Turing machine capable of carrying out the computation of any other

Turing machine, was the inspiration for the von Neumann machine

that led to today’s computers. The von Neumann machine, in turn, en-

gendered the birth of the imperative language family. Thus, the transla-

tion from a higher-level, imperative language to a von Neumann com-

puter’s very low-level language can be looked at as a translation from

one imperative language to another.

The lambda calculus, on the other hand, embodies a radically dif-

ferent notion of computation. Its heritors, the functional family, can be

thought of in good part as higher-level versions of the lambda calculus.

Translating these languages into the lambda calculus, then, is similar

to translating imperative languages into machine language.

∗ If you are interested, you might want to start with the proceedings of the few history
of programming languages (HOPL) conferences that have taken place.
† Lambda the Ultimate (http://lambda-the-ultimate.org/) has a good collection of

links to genealogical diagrams.

http://lambda-the-ultimate.org/
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But lambda calculus is not machine language, and so an impor-

tant element of compiling all functional languages is effecting this

paradigm shift: taking the representation of a computation defined

in terms of the lambda calculus and turning it into a representation

executable by a von Neumann machine.

The Neverending Story

The conclusion of this thesis is about a story that has yet to be written.

Or perhaps it would be more exact to say, that we are writing now.

For the last part of this thesis is about what is to become of our two

families. In it, we will put the families side by side. We have seen where

they have been, and some of where they are now. The final question is

one you can help answer: what are they to become?



Part I

B A C K G R O U N D





1
O V E RV I E W

Before we can discuss compiling functional languages, we must set the

scene.

beginnings looks into where the imperative and functional paradigms

began.

computers outlines the structure of modern computers with an em-

phasis on those features that particularly affect the design of

compilers.

compilers introduces compilers, including their architecture and as-

sociated theory, and concludes with a discussion of bootstrap-

ping a compiler.

7





2
B E G I N N I N G S

2.1 a sticky entscheidungsproblem

The decision problem was an important problem in twentieth-

century mathematical logic.∗ It addresses the fundamental question

of what we can and cannot know. There are many ways to pose the de-

cision problem, or entscheidungsproblem as it was often called.

One formulation was given by Hilbert and Ackermann in their 1928

book Principles of Theoretical Logic. They call the dual problems of de-

termining the universal validity and determining the satisfiability of

a logical expression the decision problem. The problem is solved

when one knows a “process” that determines either property of any

given logical expression in first-order logic. The particular first-order

logic they had in mind was that propounded in their book on the

restricted function calculus, later called the restricted predicate calcu-

lus.They were not able to be so clear about what they meant by “pro-

cess.”

By the 1930s, not only was the nebulous idea of a process formalized,

but the decision problem had been solved in a way unanticipated by

Hilbert: it was impossible to provide such a process.

The idea of a process was formalized three ways:

• the theory of recursive functions

∗ For example, it is intimately bound up with Hilbert’s tenth problem:

Given a Diophantine equation with any number of unknown quanti-
ties and with rational integral numerical coefficients: To devise a pro-
cess according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.

9



10 beginnings

• the lambda calculus

• the turing machine .

From lambda calculus springs the functional paradigm, while the Tur-

ing machine inspires the imperative paradigm.

2.2 church and his calculus

Church developed the lambda calculus in hope of providing a logical

basis for all of mathematics. While he was ultimately frustrated in

this, he succeeded in creating a rich framework for both logic and,

eventually, computer programming.

The lambda calculus formulates computation as term rewriting and

distills the concept of the function to textual substitution. The text

comes in the form of lambda terms ; the rewriting comes as re-

duction rules . To define the set of lambda terms Λ, we seed it

with an infinite set of variables V = {v, v′, v′′, . . .} and then further

admit all expressions built using two operations, application and

abstraction :

x ∈ V =⇒ x ∈ Λ

M,N ∈ Λ =⇒ (MN) ∈ Λ (application)

M ∈ Λ, x ∈ V =⇒ (λxM) ∈ Λ (abstraction)

The fundamental reduction rule of the lambda calculus is that of β-

reduction: the application of an abstracted term λxM to another

term N can be replaced by M with N substituted for every occurrence

of x throughout M, or, written more symbolically, ∀M,N ∈ Λ,

(λxM)N = M [x := N] .
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We will have more to say about the lambda calculus later in Chap-

ter 12, theory. For now, we will content ourselves with pointing

out that N in (λxM)N may be any other lambda term, including an-

other abstracted term; the only distinction between “functions” (λxM)

and “literals” v, v′, etc. is that “functions” provide opportunities for

β-reduction.

2.3 turing and his machines

Turing was working expressly to address the Entscheidungsproblem. He

formalized computation by way of an abstract machine. A “process” is

embodied in a machine. In the case of the decision problem, it would

accept logical expressions – instances of the decision problem – as in-

put.∗ If there were an algorithm for the decision problem, the machine

would then be able determine the answer for all instances. Instead,

Turing found that any such machine would never be able to decide

whether all possible input instances are or are not satisfiable; the deci-

sion problem is fundamentally undecidable, which is another way

of saying it is not computable.†

Turing’s machines look very much like a high-level sketch of our

modern von Neumann machines. They consist in a finite control (the

program), a read-write head, and an infinitely long tape (the memory).

The tape is divided into cells: each cell is either marked with a symbol

or blank. The problem instance is written on the tape and the machine

started; if it comes to a halt, the state it is in indicates the yea-nay–

result of the computation. The final contents of the tape can be used to

communicate actual details of the answer: for the decision problem as

given above, the final state could be used to indicate that, yes, the in-

∗ These expressions would, of course, have to be suitably encoded for its consumption.
† This is not to say that some individual instances of the problem are not decidable,

but that there is no solution to the problem as a whole.
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put instance is satisfiable, while the tape could contain Boolean values

satisfying the equation.

Formally, we can treat a Turing machine as a six-tuple (Q,Σ,B, δ,q0, F):

Q is the finite set of states the control can be in.

Σ is the finite alphabet available for writing the input on the tape.

B is a distinguished blank symbol that cannot be part of the input;

prior to placing the input on the tape, the tape is nothing but an

endless sequence of cells filled with B.

δ is a state transition function, δ : (Σ ∪ B)×Q → (Σ ∪ B)×Q×D, de-

scribing how the Turing machine reacts to reading a symbol σ

in state q:

• it writes some symbol, either the blank symbol or an input

symbol;

• it moves from its current state to some state in Q, possibly

the same state; and

• its head moves some direction, either left L or right R (that

is, D = {L,R}).

q0 is the initial state of the machine.

F is the set of accepting states; F ⊂ Q, and if the machine con-

cludes its computation, that is, halts in some state in F, this

indicates an affirmative answer to the question posed it. The

computation is concluded when the machine can make no fur-

ther move, which occurs when δ(σ,q) is undefined.∗

In the Turing machines’ sequential operation and reliance on changes

in their state and data store to perform computation, we find the roots

of the imperative paradigm. Even more plain is the resemblance to our

modern-day von Neumann computers.

∗ This makes δ a partial function. We can restore its totality by introducing the possibil-
ity of transitioning to a distinguished H A LT action, but this is not really necessary.



3
C O M P U T E R S

3.1 from abstract turing machines to concrete comput-

ing machines

A Turing machine takes some input, acts on it, and, if its computation

terminates, produces some output. For example, we can specify a Tur-

ing machine that takes as input a natural number and checks whether

that number is even or odd, and we can guarantee that it will always

halt with an answer. To compute the solution to another problem, we

must specify another Turing machine. This is fine when we are work-

ing with paper and pencil, but Turing machine computations executed

via paper and pencil offer no advantage over any other work with

paper and pencil and have the disadvantage of being exceedingly te-

dious. What if we wanted to move beyond paper-and-pencil machines

and manufacture machines that perform these computations in the real

world, machines that will not become bored and make a mistake, and,

further, can carry out the computations much faster than we? In that

case, producing a separate machine for every computation would not

be of much use. Indeed, what we need is a universal machine, a sin-

gle machine capable of computing anything any Turing machine can

compute.

This universal turing machine would accept as input the de-

scription of another Turing machine and data for that machine to op-

erate upon and then simulate the operation of the input machine on

the input data. By devising an encoding for the description of a Turing

13



14 computers

machine that can be processed by a Turing machine, we can build this

abstract machine. What remains is to build the concrete machine.

What parts would such a machine need? From a user’s perspective,

any Turing machine performs three primary activities:

• accept input

• perform the computation for this input

• produce output.

Two of these steps involve communicating with the user; one is en-

tirely internal to the machine. When we move to a universal Turing

machine, what was once internal becomes external: the need to simu-

late the action of another Turing machine demands some way to store

the description of the Turing machine while simulating it.

Considering Turing machines has in fact brought us to the essential

parts of a modern computer:

• means of accepting input and communicating output

• storage for input, both programs and data

• facilities to process instructions and data.

This chapter will describe these three fundamental divisions of a com-

puter with a particular emphasis on aspects of their implementation

that affect compilation.

Before we move on, let us take one last look at Turing machines in

light of this list. The processing facilities of the universal Turing ma-

chine are its transition function and states operating per the definition

of Turing machines. Input-output facilities are not actually part of the

Turing machine: input appears on the tape, computation occurs, and

we somehow observe the final state and tape contents of the Turing

machine. The universal Turing machine’s storage is its tape. It is in-

teresting that both data and program (the description of the machine
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to be simulated) lie on the same tape. A single memory for both in-

structions and data is the hallmark of the von neumann archi-

tecture and distinguishes it from the harvard architecture,

which uses separate memories for program and data.∗ While Turing

machines are a tremendously useful model for computation in the ab-

stract, and while they also serve surprisingly well to bridge the concep-

tual distance from the abstract model to the concrete machine, that is

as far as they will bring us. In the rest of this chapter, we will be talk-

ing about time-bound, space-bound, hardware computers, the clever

methods used to reduce the limitations introduced by reality, and how

those methods affect compilation.

3.2 processor

The processor is the brain of the computer. It is responsible for read-

ing instructions, decoding and dispatching them for execution, and

directing the other functional units in their operation. It does this re-

peatedly in a rapid instruction-fetch–decode–dispatch cycle: processor

performance is often measured in terms of millions of instructions per

second (mips), as well as in terms of the average cycles per instruction

(cpi). The time to execute an instruction varies from a few cycles (sim-

ple arithmetic operations) to millions of cycles (loading values from

memory). The processor keeps track of which instruction to fetch next

via its program counter (pc). Every time it fetches an instruction,

it increments the PC to the address of the location of the next instruc-

tion.

∗ To be fair, it is possible to define universal Turing machines naturally homologous to
both of these architectures; it is simply our exposition that makes the von Neumann
appear the more natural.
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3.2.1 The Fetch-Decode-Dispatch Cycle

The processor only understands binary digits, or bits . The instruc-

tions themselves are simply distinguished sequences, or strings, of

bits with an agreed upon meaning. The bit strings are given meaning

as part of an instruction-set language (isl). Each instruction-

set language is used to talk with a specific instruction-set ar-

chitecture (isa). Each processor is an implementation of some

instruction-set architecture and understands the instruction-set lan-

guage designed for that architecture. In a sense, the instruction-set

architecture is a description of an interface between an instruction-

set language and a particular processor. It leaves the details unspec-

ified, and this is where the various processors implementing a particu-

lar instruction-set architecture differentiate and distinguish themselves.

As a loose analogy, consider a caller ID unit. It has to be able to con-

nect to the phone system, and it has to speak the same language as

the phone system to be able to receive the information it displays, but

beyond that it is free to vary its shape, size, and the number of callers

it can remember, among other things.

The processor computes according to the instructions it is given. It

executes the instructions one after another. Before it can follow an in-

struction, it first has to get it, that is, the processor must fetch the

instruction. Next, it must read and understand it. This process of look-

ing over and understanding an instruction is called instruction

decoding. The first step of decoding an instruction is to recognize

what sort of instruction has been fetched. Various sorts of instructions

have various parts (called operands) relevant to what the processor

is supposed to do; for example, an instruction to read in a location

in memory will have to specify the location. After the processor un-

derstands these parts of the instruction, the processor has completed
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decoding the instruction. The instruction can then be dispatched for

execution and the next instruction can be fetched by the processor.

What sorts of instructions are there? Instructions generally cover

arithmetic operations (add, subtract, multiply, divide) on integers and

floating point numbers,∗ shifts (left and right – the bitstring 001 shifted

left by 2 becomes 100), logical operations (and, or, not, exclusive or),

jumps (instructing the processor to change its PC and begin fetch-

ing instructions at another location) and conditional branches (jumps

that are predicated on a particular condition, like a register’s being

nonzero), and memory operations (load from memory into a register,

store from a register into memory, and possibly copy from register to

register or memory location to memory location). The way conditional

branches are supported and the types of conditional branch instruc-

tions provided vary from processor to processor, as do the ways that

memory locations can be specified. Many other operations may be pro-

vided, such as those meant to deal particularly with strings of alpha-

betic characters coded into bits in one way or another or instructions

meant to deal with numbers encoded as binary-coded decimal rather

than as binary numbers. Each instruction set is different.

3.2.2 Functional Units

The instructions themselves are carried out by other functional units.

Many of the arithmetic operations will eventually be routed through

an arithmetic logic unit (alu). Those dealing with floating point num-

bers, however, are likely to be sent to either a floating point unit or

even a floating point co-processor.

Storage for operands is frequently provided by registers . Reg-

isters may be either special-purpose (available for use only in floating

∗ Floating-point numbers are the computer equivalent of scientific notation. The
“point” of “floating point” is the decimal point, whose position relative to the sig-
nificant digits (those that we actually bothered to write down) can be changed by
varying the exponent.
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point operations, for example, or devoted to storing the PC or the num-

ber zero), in which case they are likely to be divided into register

classes, or general-purpose (available for any use in any instruction).

Others may be functionally general-purpose but reserved for use by

the operating system or assembler. The trend has been to greater num-

bers of general-purpose registers. Certain registers are exposed to the

programmer via theinstruction-set language and guaranteed by the

instruction-set architecture, but the implementation is likely to make

use internally of far more registers. If all the operands of an instruc-

tion must be in registers, the instruction is said to be register-register.

Some instruction sets have register-memory or even memory-memory

instructions, where one or even all operands of the instruction are in

memory. This was particularly common in the past.

3.2.3 Assembly Language

Bit-string instructions are fine for machines, but they are difficult for

humans to work with. For this reason, assembly languages were

developed. Assembly languages represent the instructions with alpha-

betic abbreviations such as j for jump, beq for branch if equal, or add

for add. They will often allow the use of textual labels for the spec-

ification of branch and jump targets and the use of names for regis-

ters as opposed to purely numbers. They will accept directives as to

the alignment of data in memory and convert character strings to bit

strings in a particular encoding rather than requiring the programmer

to perform the conversion. They might also provide greater levels of

abstraction, such as providing pseudoinstructions like a richer set of

branch conditionals that can be readily translated into the processor-
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provided instructions or allowing the programmer to define macros∗

for common code sequences.

The assembler is responsible for translating this symbolic instruc-

tion language into the binary instruction set language. It assembles

assembly language code into object code executable by the proces-

sor. Its action is that of a compiler, though its job is generally much

simpler than that of compilers for higher-level languages whose level

of abstraction is much farther from the underlying processor.

3.2.4 Types of Processors

There have been many types of processors, but the two dominant types

are the complex instruction set computers (cisc) and the

reduced instruction set computers (risc).

CISCs were developed when computing resources were very lim-

ited and most programming was done in assembly languages. Since

the instruction set language itself was programmers’ primary interface

to the machine, it seemed worthwhile to provide higher-level instruc-

tions that accomplished more complex goals, such as copying an entire

string of characters from one place in memory to another or repeat-

ing an instruction a number of times determined by a counter register.

They also frequently used variable-length instructions, to minimize the

amount of space required by instructions – more complex instructions

would frequently require more information, and so more bits, than

simpler instructions.

The complex instruction sets of CISCs were meant make it easier

for people to program in assembly language. With the development

of higher-level languages and compilers, these features were no longer

necessary. In fact, compilers of the time were unable to take full ad-

∗ So-called by abbreviation of “macro-instruction.” These are “big” instructions that
stand in for and eventually expand out into a longer or more complicated sequence
of instructions. The instructions might also be capable of accepting arguments to be
substituted for placeholders throughout the expanded sequence.
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vantage of these complex instructions and often generated instead

equivalent sequences of simpler instructions. More complex instruc-

tions also require more complex logic and so more space within the

processor. Supporting the complex instruction set slowed the proces-

sor and made it difficult to take advantage of more advanced proces-

sor design ideas. By reducing the complexity of the instruction set, the

amount of space needed in the processor to implement the instruction

set could be reduced, enabling the inclusion of greater numbers of fast

registers. RISCs capitalized on these observations. One of the most no-

ticeable simplifications of their instruction sets is the elimination of

memory-memory, register-memory, and memory-register operations

beyond those necessary to load data from memory to registers and

store data to memory from registers, leading to the characterization of

RISC architectures as load-store architectures.

RISC ideas have been highly influential, and RISC processors are

often used in embedded situations, such as in cell phones, PDAs, wash-

ing machines, automobiles, and microwaves. However, when IBM elected

to go with Intel’s 8086 series CISC processors rather than Motorola’s

68000 series RISC processors for its personal computers, it set the

stage for the x86 and its successors to become the most common non-

embedded processors. Modern CISC processors, such as those made

by Intel and AMD, integrate elements of the RISC philosophy into

their designs while preserving compatibility with older x86 software.

The CISC instructions are often translated by the processor into RISC

microcode, which is then executed by the processor. Many of the more

“CISCy” instructions have been preserved for compatibility but allowed

to “atrophy” to where they will execute much more slowly than a

longer sequence of simpler instructions accomplishing the same result.

This blending of RISC and CISC ideas, which eliminates any clear dis-

tinction between the two approaches to processor design, has brought

us to what might be called a post-RISC era.
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3.2.5 Issues Particularly Affecting Compilation

When you compile software, you want it to run as well as possible

on your computer. Often, this means as fast as possible, and as much

work has gone into making the processors themselves run as fast as

possible, the processor provides a lot for a compiler writer to worry

about.

Registers

The number of registers available for compilation affects the useful-

ness of various optimizations as well as the speed of the compiled

code. Storing to memory is slow, while registers are fast: the more

data that can be kept in register, the better. Thus, the more general

purpose registers available to the compiler when it comes time to

allocate the generated code among the available registers, the better.

Some processors provide a means to utilize the greater number of

implementation-supplied registers; the register windows of Sun

Microsystem’s SPARC (Scalable Processor ARChitecture) machines are

one example. As mentioned above, some architectures will specify that

various registers are reserved for various purposes and unavailable to

the compiler. The architecture might also specify how registers are to

be treated during a procedure call by defining a calling conven-

tion.∗ All of this directly affects the code generated by a compiler

targeting the architecture.

Historical Accidents and Implementation-Specific Extensions

As mentioned above, while the instruction set language might pro-

vide a special-purpose instruction for handling, say, string copying,

this might actually execute slower than a sequence of simpler instruc-

∗ Even if an architecture has nothing to say about register usage in procedure call,
a programming language specification might specify a calling convention in an at-
tempt to guarantee interoperability between programs written in the language.
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tions accomplishing the same thing. Thus, it is not sufficient to be fa-

miliar with the specification of the instruction set language or even of

the instruction set architecture: decisions made in the implementation

of the specific processor can affect choices made during compilation

(or at least in some cases should). Other operations retained for com-

patibility might also be best avoided.

At the same time, various implementations will extend the instruc-

tion set in ways their designers hoped would be of use to compiler

writers. Examples are the streaming SIMD extensions∗ added to var-

ious successors of the x86 architecture by Intel and AMD meant to

speed up code compiled for multimedia applications.

Pipelining and Speculation

In an attempt to speed up instruction execution in general, modern

processors are deeply pipelined. Pipelining exploits instruction-

level parallelism. Rather than decoding an instruction, dispatch-

ing it, and waiting for its execution to complete before beginning to ex-

ecute the next instruction, instructions are decoded immediately, one

after another, and dispatched, so that their execution overlaps. Pipelin-

ing does not decrease how long it takes an instruction to execute, but

it does increase the number of instructions that can be executed per

unit of time, making it appear that instructions are executing faster.

The depth of the pipeline places an upper limit on the number of

instructions whose execution can overlap. However, various hazards

of an instruction sequence can prevent an instruction from completing

every cycle, and so prevent a new instruction from being dispatched

each cycle. This causes a decrease in the number of instructions that

can be executed in a given time period, a quantity referred to as in-

struction throughput.
∗ Generally further abbreviated to SSE, SSE2, etc. for the various generations of ex-

tensions. The SIMD part stands for “single instruction, multiple data.” An example
of such an instruction would be an add operation that specifies the addition of two
vectors (likely representing a point in three-dimensional space), each made up of
several data components.
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structural hazards occur when multiple instructions require si-

multaneous use of the same functional units.

data hazards occur when an instruction requires data that is not

yet available.

control hazards occur when the program counter is to be altered,

but how it will be altered is not known sufficiently in advance

to keep the pipeline full.

All of these hazards cause stalls, also known as bubbles – space

in the pipeline where an instruction would be executing, except that it

cannot.

Various methods are employed to address these hazards. Structural

hazards can be addressed by carefully designing the instruction set

and the processor. Within the processor, data hazards are addressed

by forwarding. Forwarding diverts data to where it is needed as

soon as it is available, rather than waiting for it to become available

through the usual means. For example, if an instruction is waiting on

a value to be loaded from memory to a register, rather than waiting

for the value to enter the datapath and finally be committed to register

before loading it from the register, forwarding will make the value

available as soon as it enters the datapath. It will eventually be stored

to the targeted register, but in the mean time, the instruction that was

waiting on the value can continue execution.∗ Outside the processor,

data hazards are partially addressed by the introduction of a memory

hierarchy, which we will discuss in Section 3.3, Memory.

Control hazards are addressed by branch prediction. This can

be as simple as always assuming a branch will not be taken or more

complex, such as dynamically tracking whether the branch is taken

∗ Some instruction sets expose the delay following branch (and load-store) instruc-
tions to the user in what is called a delayed branch: the next (or next several)
instructions following a branch instruction are always executed. As pipelines deep-
ened, exposing the delay to the user became less and less feasible, and successors of
such instruction sets have often phased out such instructions in favor of non-delayed
versions.
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more often than not during execution and acting accordingly. The pro-

cessor begins executing instructions as if the branch had gone the way

it predicted; when the branch is finally decided, if it goes the way that

was predicted, there is no stall. If it goes the other way, there must still

be a stall. Further, the processor must be able to undo all the instruc-

tions executed along the path not taken.

This is a specific example of a more general technique called spec-

ulative execution, in which a guess is made about some prop-

erty of a part of the instruction stream, execution continues as if the

guess were correct, and then is either confirmed or undone depend-

ing on whether the guess was correct or not. This is useful not only

for branches, but for reordering the instruction stream in general to

increase instruction-level parallelism.

Multiple Issue Processors

Another way to address these hazards and improve performance in

general is to move to multiple issue processors. Rather than issu-

ing at most a single instruction each cycle, multiple issue processors

issue multiple instructions whenever possible. They are able to do this

because much of the datapath has been duplicated, perhaps multi-

ple times. Instructions can then truly execute simultaneously rather

than simply overlapping. Clever methods are employed to ensure the

appearance of sequential execution is not violated and to resolve de-

pendencies between instructions. However, instruction sequences that

have been optimized to maximize instruction-level parallelism will run

faster; an optimizing compiler will take advantage of this.

In fact, in static multiple issue processors, compilers have no

choice but to take advantage of this, as the processor itself merely per-

forms multiple issues by following instructions. The burden of schedul-

ing instructions to maximize instruction-level parallelism and taking

advantage of the architecture falls entirely on the compiler. This has
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the advantage of enabling the compiler to leverage its knowledge of

the properties of the entire program to demonstrate that reordering

and simultaneously scheduling instructions is safe, but it has the dis-

advantage of directly exposing much of the internal design of such a

processor, so that a program is more likely to have to be recompiled in

order to run on even a slightly different processor.

dynamic multiple issue, or superscalar, processors attempt

to exploit instruction-level parallelism at runtime. As they read in in-

structions, they reorder them, issue multiple instructions whenever

possible, and speculatively execute instructions when they can. Since

all of this goes on “behind the scenes,” a compiler can completely

ignore it and still produce runnable code. At the same time, a se-

quence of instructions tailored for a specific processor can maximize

the amount of instruction-level parallelism exploitable by that proces-

sor. Thus, unlike with static multiple issue processors, knowledge of

the specific implementation of an instruction-set architecture using dy-

namic multiple issue is advantageous to the compiler but is not nec-

essary to produce code that will run, and code that runs on one im-

plementation of the instruction-set architecture should run sufficiently

well on all other implementations of the same, regardless of whether

or not dynamic multiple issue is employed.

Not only do pipelining, speculation, and multiple issue greatly com-

plicate the development of a processor, they also make it more difficult

to predict how generated code will be executed, as well as placing

great emphasis on optimizing for instruction level parallelism. Exam-

ples of the effect these have on compilers are the efforts taken to min-

imize the number of branches and keep values in register as long as

possible, though this latter is even more severely motivated by the

presence of a memory hierarchy.
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3.3 memory

A processor is nothing without memory. In the course of computing,

the processor needs some way to store the data it is computing with.

This necessitates some amount of temporary memory. Moreover, we

should like for this memory to be very fast, so that computations not

take an inordinate amount of time. However, we should also like to in-

troduce a more persistent form of memory. This could take the form of

something rather non-technical, such as punched cards, or something

more technically sophisticated, such as a hard drive. We should also

like this persistent storage to be as fast as possible, but we would be

willing to sacrifice speed for capacity.

It is not surprising, then, that there should arise a definite memory

hierarchy. This hierarchy is organized as a pyramid with the proces-

sor at its apex: memory closer to the processor can be accessed more

quickly but can store much less (for reasons of both cost and space),

while memory further from the processor is slower but much more ca-

pacious; by the time we reach the lowest level, secondary storage,

the capacity has become virtually unlimited. This severe difference –

fast and small on the one hand, slow and large on the other – is fine

so long as we can restrict our computations to use the faster memory

and leave the slower purely for storage. But this is rarely possible.

In order to reduce the need to use slow, secondary storage, we ex-

ploit the frequent fact of spatial and temporal locality in memory ac-

cesses to promote contiguous blocks of secondary storage into caches

– faster but less capacious memory that mirrors the contents of sec-

ondary storage. Caches are organized into levels based on how close

they are to the processor, and so how fast and small, generally from

level one (L1) to at most level three (L3). Memory accesses first attempt

to hit on the desired memory in cache; only if that fails do they have to

resort to disk. The time to realize that the attempt to hit the memory in
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the cache has failed is called the miss penalty. This penalty is only

introduced because of caching, but without caching, one would pay

the far higher price of always having to wait for the disk to respond.

One common way to reduce both the miss penalty and the time to

hit is to restrict the number of places a given block of memory can

be placed in the cache. If the data at an address can be stored in any

cache line, one must check every cache line to be sure that the data is

not there. Such a cache is called fully associative. If the data at

an address can only go in exactly one line, one can readily determine

whether or not it is in the cache. Such a cache is called one-way set

associative. However, because each level of the memory hierarchy

is smaller than the one below it, there are always fewer cache lines

than there are blocks of memory that could need to be stored in the

cache. Limiting each block to being stored in only one, or only two,

or any number of places fewer than the number of lines in the cache

introduces a competition for those limited number of places among

the blocks of memory that can only be stored in those places. This is

in addition to the necessary competition for being in any line at all of

the space-limited cache that occurs even in a fully associative cache.

While caches seek to exploit spatial and temporal locality, precisely

how is a matter of some delicacy, with no clear best solution. One can

attempt to reduce the miss penalty or time to hit, increase the capacity

of the cache, improve its strategy for loading in a new cache line

(the unit of storage within the cache, amounting to a fixed number of

bits) from disk and its selection of a line to evict, but one cannot do all

of these at once. Multilevel caches only further complicate things.

To help in thinking about such issues, one can characterize the types

of cache misses through the “three Cs”:

compulsory misses occur on first access to a block of memory be-

cause a memory access has to miss before its line can be brought

into the cache. They cannot be avoided, though they can be pre-
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vented from causing a delay by prefetching, which provides

a way to indicate that a given block of memory might be needed

in the future and should be loaded now.

capacity misses occur when a previously evicted block is requested

again because a cache can only store so many lines of memory.

They can be decreased by increasing the size of the cache.

conflict misses occur only in non-fully associative caches, when a

block that was evicted by another block competing for the same

set of cache lines is requested again. They can be decreased by

increasing the associativity of the cache.∗

Of all of these, the one that has the most direct effect on compilation

is compulsory misses, provided prefetching is available. Otherwise, it

is simply the existence of a memory hierarchy and its workings that

affect a compiler. These details can make some data structures more

efficient than others, affecting how the compiler codes the runtime

behavior of the program. It also makes some uses of memory to store

data during the program more efficient than others: use of one memory

layout or another also falls to the compiler.

The existence of a memory hierarchy has a major effect on both com-

pilation and compiler design. It affects compilation by increasing the

need for and desirability of optimizations to increase spatial and tem-

poral locality of memory accesses, reduce the need for storage, and

confine space needs to registers internal to the processor as much as

possible. It affects compiler design not only because of its effects on the

code a compiler must generate, but also because the memory hierar-

chy has an effect on the behavior of the data structures and algorithms

used to implement the compiler. Most algorithms are developed, ei-

ther intentionally or naïvely, in a flat memory model that assumes

unlimited fast memory. As soon as one begins considering the effect

∗ While competition occurs between all blocks for all cache lines in a fully associative
cache, the misses that occur due to that competition are classed as capacity misses.
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of the memory hierarchy on the data structures and algorithms used,

formerly optimal implementations may no longer be so.

Early attempts to develop algorithms and data structures within the

context of a memory hierarchy used the disk-access model, which

parameterizes its algorithms based on properties of the memory hi-

erarchy such as the block size of and number of blocks in the cache

(also called the width and height of the cache). These parameters are

often not available and difficult, if not impossible, to determine at run-

time. Introducing this explicit parameterization also makes code less

portable and maintainable. Further, the model presumes fine-grained

control over the behavior of the cache and storage that frequently is

not available.

The later cache-oblivious model addresses these problems: while

proofs of the behavior of its algorithms and data structures are by ne-

cessity parameterized, its data structures and algorithms are not, and

behave well so long as at least a two-level memory hierarchy exists that

can be modeled in the fast-slow small-large fashion appropriate to the

two levels of cache and storage. Such a relationship exists generally

between all levels of a memory hierarchy, so this suffices to guarantee

the desired performance. This guarantee can and has been made pre-

cise in a formal fashion; for details, consult the Bibliographic Notes for

this chapter.

3.4 input-output

Input-output is the computer’s interface with the outside world. It en-

compasses everything from keyboards and monitors to network con-

nections, disk access, and, in some sense, communication and synchro-

nization between multiple processes (that is, currently running pro-

grams with their own memory context and position in their instruc-

tions) and between multiple threads of execution. (Threads make
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up a process: each process has at least one thread of execution, but

it might also divide its work between multiple threads.) Input-output

requires implementation support. Input-output is primarily supported

in one of two ways, through busy-wait (“spin blocking”) protocols and

through the use of interrupts.

In a busy-wait input-output protocol, the computer provides a

means for a program to indicate it wishes to perform output or re-

ceive input from a device. A signal is used to indicate the status of the

input-output “channel”: once it is ready to accept output or provide in-

put, the signal is set to indicate this. On performing the desired action,

the signal is reset. This requires constant polling of the signal to see

whether its status has changed. The process performing this polling is

unable to proceed while it cycles between checking whether the status

has changed and waiting between checks. A process behaving in such

a way is said to be spin blocking. Signals are also often provided by

the processor for use in synchronizing the actions of processes using

shared-memory concurrency. Atomic operations such as test-and-set

might also be provided to help support concurrent execution.

Input-output can also be synchronized via interrupts. Interrupts

are a sort of “unexceptional exception” in that they frequently make

use of the processor’s facilities for handling exceptions (such as di-

vision by zero and numeric over- and underflow) but are only excep-

tional in the sense that they require an immediate, real-time response

and a switch in context from the currently running process to a special

exception-handler that will perform the input-output. (Interrupts are

also often used by operating systems to provide access to the system

routines they provide.) How interrupts and exceptions are supported

and the types of interrupts and exceptions supported vary from pro-

cessor to processor, but such facilities are common in most, if not all,

modern processors because of the advantage of such an implementa-

tion over busy-wait. While use of interrupts is preferable to busy-wait,
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it is not always possible. For example, communication over a network

as occurs in using the Internet is frequently handled via busy-wait

since most of the protocol stack is implemented in software.

Input-output is highly implementation-dependent and is a frequent

source of complexity and difficulty both in the design of program-

ming languages (particularly functional languages, for reasons to be

discussed later) and processors. It is also slow and time-consuming.

Due to the complexity of input-output, however, many of the issues

are often exposed to and expected to be managed at the program-

level rather than the language-level, so input-output is not a frequent

target of optimizations in the back-end, nor would it be likely to be

a very fruitful target. Handling concurrency and parallelism, on the

other hand, may be the responsibility of the compiler, particularly in

parallel programming languages. This is frequently true of the quasi-

concurrency of exceptions included in many newer languages. Ex-

ceptions are programmatic realizations of exceptional conditions that

can arise at runtime, such as division by zero or the inability to access

a given file. Whereas programs would generally give up and abort ex-

ecution on encountering such a problem in the past, exceptions make

it possible to recover from exceptional conditions and continue exe-

cution. They also mean that execution might suddenly need to jump

to an exception handler at unpredictable times. Where permitted by

the language, choices made by the compiler in how to support concur-

rency and parallelism can affect program runtime and safety.

3.5 bibliographic notes

The universal Turing machine was introduced by Alan Turing in his

seminal paper Turing [127]. If the idea particularly intrigues you, you

might enjoy Herken [52], a collection of short papers related to and

inspired by Turing’s own.
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Patterson and Hennessy [98] is a good introduction to the design

and architecture of modern computers, including an influential RISC

assembly language and familial variations thereof. Another work by

the same authors, Hennessy and Patterson [51], goes into far more de-

tail. Information on specific instruction-set architectures and languages

is generally freely available online from the manufacturer.

For an introduction to the cache-oblivious memory hierarchy model,

you could do no better than to start with Demaine [39]. This paper

briefly surveys the history of memory hierarchy models, formally in-

troduces the cache-oblivious model, and explores some of its essential

data structures with proofs of their space behavior. It provides pointers

to the relevant literature throughout.
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C O M P I L E R S

A compiler is a translator. As in translation, there is a source lan-

guage and a target language, and it is the translator’s job to analyze

the source text and produce “equivalent” text in the target language.

When translating human languages, the equivalency of the original

and a translation is only rough because there are so many factors on

which to evaluate equivalency. When it comes to programming lan-

guages, however, we are not interested in the niceties of meter or allit-

eration, nor do we care about any subtleties of connotation: we want

to map a computation expressed in one language to a computation

expressed in another such that both produce identical outputs when

given identical inputs.

Beyond that requirement, everything else about the computation is

fair game for alteration. Since the source language is often unaware of

the peculiarities of the target language, many of the details of how ex-

actly the computation should be carried out are unspecified and open

to interpretation: 5× 4 can be calculated by straightforward multipli-

cation of 5 and 4, but if 5× 2 is already known, we need only multiply

that quantity by 2, and since these multiplications happen to be powers

of 2, we could instead employ bit shifts in place of multiplication, espe-

cially as a bit shift is likely to take less time than multiplication. Even

if the source language is also the target language, the original source

code might still be improved by careful translation without altering its

behavior in the high-level sense of input-output mapping discussed

above.

Alterations that will preserve observable behavior are called safe:

correspondingly, alterations that might not are called unsafe. A com-

33
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piler will never voluntarily perform unsafe alterations, though some

allow the human user to instruct them to do so, as might at times

seem desirable for runtime checks that serve only to catch errors that

slipped past the programmer or when the human is able to determine

that a transformation that appears to the compiler to be unsafe will, in

fact, be safe in this case. The compiler must act conservatively: it can

only consider safe those transformations that it can prove to be safe,

and it must assume the worst where it cannot prove the behavior to be

any better. The user need not make such assumptions.

You might be wondering whether, if compilers are translators, is

there a similar programming language analogue for human language

interpreters? There is, and they are even called interpreters. They

perform on-the-fly interpretation: rather than translating the code for

future execution, they directly execute it. They are not able to perform

the extensive analysis of the whole program that compilers perform.

It is, in fact, this degree of analysis that particularly distinguishes a

compiler, though translation for the future rather than for the present

is also frequently a characteristic. This latter characteristic, however,

is less apparent in more recent developments such as just-in-time

compilation, which might be coupled with an interpreter as in the

Java Hotspot virtual machine. Our subject is neither interpreters nor

just-in-time compilation, however, so this concludes our first and last

words on the two subjects.

A compiler is a translator: it analyzes the source code and produces

equivalent target code. This suggests a decomposition of the compiler

into two parts, one performing analysis and the other generating tar-

get code. The analysis part is commonly called the front end, while

the code generation part is called the back end. From our discus-

sion of alterations and the relative speeds of multiplication versus bit

shifts, you might also infer that the compiler also attempts, following

its analysis, to improve the code in some fashion. This optimization
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is at times folded into the front and back ends, but as the number of

optimizations employed rises and the complexity of performing them

alongside the work of the front and back ends increases, it becomes

wise to dedicate part of the compiler to optimization alone. Optimiza-

tion can only be performed following analysis: we cannot improve

what we do not understand. At the same time, we should like to gen-

erate optimized code as directly as possible. This suggests placing the

optimizer between the front and back ends. Due to this common de-

composition of concerns and arrangement of the flow of control be-

tween the parts, the part concerned with discovering and performing

optimizations is sometimes wryly referred to as the middle end of

the compiler.

4.1 front end : analyzing source code

The front end of the compiler is responsible for analyzing the source

code. It takes a long string of characters (the program), discerns what

each string is meant to be in terms of the “types of speech” of the

programming language, figures out how the various parts fit together

to form a valid program (or that they do not form a valid program,

if the programmer has made an error!), and tries to infer the mean-

ing of the parts. The first two steps are similar to the spell-checking

and grammar-checking performed by a wordprocessor. The last step is

one wordprocessors have not quite achieved just yet. An analogy along

the same lines as the others, however, would be “sense-checking” or

“sanity-checking,” which would answer the question, “This is a syn-

tactically valid sentence, yes, but does it mean anything, or is it non-

sense?” As a whole, the front end of a compiler represents one of the

great achievements of computer science: we have powerful formalisms

that can be used to specify and automatically generate it.
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4.1.1 Lexical Analysis

As presented to the compiler, the source code is a very long sequence

of characters. This is the domain of lexical analysis. A long se-

quence of characters does not mean much at the character-level, so the

first thing the front end must do is proceed from characters to a more

meaningful level of abstraction. The lexer, which performs lexical

analysis (and is also called, quite naturally, the lexical analyzer),

reads in characters and chunks them into tokens, strings of charac-

ters having some meaning at the level of the programming language’s

structure. These tokens are akin to parts of speech in spoken language

– while the specific details of the token (“this identifier is formed by

the string engineIsRunning”) might be recorded for use in later stages,

they are subsumed by the token, which treats, in a sense, all nouns as

nouns, regardless of whether one is “cat” and one is “dog.”

This tokenization is performed systematically by simulating the op-

eration of a finite automaton that recognizes tokens. A finite au-

tomaton is, like a Turing machine, an abstract machine, but it is far

simpler and far less powerful: a Turing machine can do everything a

finite automaton can, but a finite automaton cannot do everything a

Turing machine can.

Regular Languages

It turns out that we can describe all decision problems as language

problems. A language is a (potentially countably infinite) set of words,

and words are made up of characters from a finite alphabet by con-

catenation, the “chaining together” of characters denoted by writ-

ing them without intervening space: concatenating a and b in that

order gives ab. The decision problem recast as a language problem be-

comes, “Given a word and a language (and, implicitly, an alphabet), de-

termine whether the word is or is not in the language.” The languages
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for which a Turing machine can solve this problem are known var-

iously as recursive, decidable, and turing-computable lan-

guages. The languages whose membership problems can be solved by

a finite automaton, on the other hand, are known as the regular

languages and form a proper subset of the recursive languages.

Finite Automata

A finite automaton is a constructive way to describe a regular lan-

guage. Each finite automaton is associated directly to a language, the

language whose membership problem it solves. Given a word, it solves

this problem by examining the word one character at a time. After it

has consumed all its input, it halts operation. Based on the state in

which it halts, we say either that it accepts the word or rejects it. We

build a finite automaton by specifying its makeup. A finite automaton

is made up of a finite set of states and a transition function that de-

scribes how, in each state, the finite automaton responds to consuming

the characters of the alphabet. In specifying a finite automaton, we also

specify the alphabet of its language, the finite automaton’s initial state,

and the set of final or accepting states, those states which, when

the finite automaton halts in them, indicate acceptance of the word.

We can specify the states and transition function in two ways: either

in a table, as in Fig. 1, or graphically through a transition dia-

gram. A transition diagram has circular nodes for states, typically

labeled with the state name, and arrows between states, which indi-

cate the transition function. The arrows are labeled with the character

causing the state transition indicated by the arrow. Accepting states

are indicated by circling the node representing their states, so that

they appear as two concentric circles. Fig. 2 provides three examples

of transition diagrams.

The form of the transition function distinguishes between several va-

rieties of finite automata. A transition function that, on any character,
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Figure 1: Specifying FA states and functions: Tables
These tables present the same information as the transition dia-
grams of Fig. 2. They represent three finite automata recognizing
the language (a | b)?b. We have adopted the convention that all
finite automata begin in state 0, asterisks indicate final states, and
empty entries represent undefined transitions.

(a) Deterministic

input

state a b

0 0 1

*1 0 1

(b) Non-Deterministic

input

state a b

0 0 0, 1

*1

(c) ε–Non-Deterministic

input

state ε a b

0 1

1 2, 3

2 4

3 5

4 6

5 6

6 1, 7

7 8

*8



4.1 front end : analyzing source code 39

Figure 2: Specifying FA states and functions: Figures
These transition diagrams present the same information as the ta-
bles of Fig. 1. They represent three finite automata recognizing the
language (a | b)?b.

(a) Deterministic

•
start

//?>=<89:;0 b
//

a


 GFED@ABC?>=<89:;1

b
��

a

dd

(b) Non-Deterministic

•
start

//?>=<89:;0 b
//

a,b

�� GFED@ABC?>=<89:;1

(c) ε–Non-Deterministic

?>=<89:;2 a
//?>=<89:;4

ε

$$
IIIIIII

•
start

//?>=<89:;0 ε
//?>=<89:;1

ε
::uuuuuuu

ε $$
IIIIIII ?>=<89:;6 ε

//

edgf
ε

�� ?>=<89:;7 b
// GFED@ABC?>=<89:;8

?>=<89:;3
b
//?>=<89:;5 ε

::uuuuuuu

permits a transition to only one state is known as a determinis-

tic finite automaton (dfa). A transition function that permits

a transition to a set of states on any character is known as a non-

deterministic finite automaton (nfa). It accepts if any state

out of the set of states it halts in is an accepting state. A final vari-

ety of finite automaton is distinguished by admitting not only tran-

sitions to a set of states, but “autonomous” transitions – transitions

that occur without consuming any of the input. These are known

as εtransitions because transitioning along them “consumes” only

the empty word ε made up of no characters. This variety of finite au-

tomaton is known accordingly as an ε–non-deterministic finite

automaton (εnfa). These varieties of finite automata are all equiv-

alent in power – it is possible to convert a finite automaton of one type

into another type such that both recognize the same language – but

some sorts describe a language more naturally or concisely than oth-

ers. Finite automata are unique in that, for a given regular language,

there is a minimal deterministic finite automaton, a deter-
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ministic finite automaton with the fewest number of states possible

that is unique up to renaming of states.

Figs. 1 and 2 describe the same three finite automata in two ways,

both in a table and through a transition diagram. All three finite au-

tomata recognize the same language. We can describe this language

through finite automata as done here or through the regular expres-

sion (a | b)?b, which will be discussed in the next section. From the

transition diagrams, what do you think this regular expression means?

The ε–non-deterministic finite automaton is the most visually com-

plex. It was constructed algorithmically from the regular expression

given above by patching together simpler finite automata by way of ε

transitions. The many ε transitions make it highly non-deterministic.

The simple non-deterministic finite automaton was created by identi-

fying states joined solely by ε transitions. It is the most elegant of the

three. Its sole non-determinism consists in state 0 having transitions to

two different states on the character b, both to itself and to the final

state 1. The deterministic finite automaton was constructed from the

non-deterministic. Its state 1 behaves like the non-deterministic finite

automaton when it is in the set of states {0, 1}, which it enters after

encountering the character b.

Regular Expressions

We can also describe regular languages declaratively, using regular

expressions. These do not describe how to recognize a given lan-

guage, but rather describe the language directly. This is done by aug-

menting the alphabet with a direct linguistic interpretation and by

adding special symbols representing operations on this linguistic in-

terpretation.

The linguistic interpretation associated to a character is direct and

intuitive: the character a represents the language consisting of that

single character, {a}. It is natural to generalize this direct representa-
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tion to words: the word w represents the language consisting of that

single word, {w}. Words are built up by concatenation. To aid in de-

scribing many concatenations of a simple structure, we can introduce

some notation. Iterated concatenation of a regular expression w with

itself is represented by superscripts: w0 is the language of only ε, the

empty word; w1 is just {w} itself; and, as a rule, wn = wn−1w. We can

represent unlimited concatenation using the kleene star
?: w? rep-

resents the set of all concatenations of the language represented by w

with itself, includingw0:w? =
{
w0,w1,w2, . . .

}
. If we wish to exclude

the possibility of w0, we can use the otherwise equivalent positive

closure operator +: w+ =
{
w1,w2, . . .

}
. To represent choice or al-

ternation in the language – either regular expression w or regular

expression v is acceptable – we can introduce a corresponding opera-

tor; + and | are both popular choices for representing it: we shall use |

here. Thus, the regular expression a | b represents the language {a,b} ,

while, more generally, the regular expression w | v constructed by the

alternation of the regular expressions w and v represents the language

L(w) ∪ L(v), where we use L(w) to represent the language associated

to the regular expression w.∗ Finally, to allow unambiguous compo-

sition of regular expressions, we can introduce clarifying parentheses.

These let us describe, for example, the language (a | b)?b, the language

comprising all strings of zero or more as or bs followed by a b.

While regular expressions are very useful for describing regular lan-

guages, they do not provide a way to recognize the languages they

describe. Fortunately, regular expressions happen to be readily inter-

convertible with finite automata.

∗ In general, where X is any description of a language, whether by Turing machine
or finite automaton or regular expression or by any other description aside from the
sets representing the languages themselves directly, we write L(X) for the language
described by X.
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Lexers

With regular expressions to describe the lexical structure of tokens and

finite automata to perform the actual work of recognizing tokens, we

have a ready way to perform tokenization. Simply scan through the

character stream till every recognizing finite automaton will begin to

fail; of those that make it this far and will accept, select the token of

the highest priority as that summing up the scanned text. This intro-

duction of prioritization provides an intuitive way to resolve ambigu-

ity deriving from our wishing to chunk an input, the program, that

in truth belongs to a language unrecognizable by a finite automaton,

into words belonging to various token-languages recognized by finite

automata.

For example, consider developing a lexer for the input

if ifPredicate;

then

echo "True . ";

else

echo "False . ";

fi �
intended to report whether the provided predicate is true or false.∗

The desired tokenization is illustrated in Fig. 3 on page 43 along with

a sequence of lexing rules that leads to this tokenization.

Before you can understand the rules, you must first understand

some common extensions to the regular expression notation introduced

so far:

a. A set of characters enclosed in square brackets is equivalent to

the alternation of those characters, so [abc] = (a | b | c).

b. Within square brackets, an inclusive range of characters is indi-

cated by interposing a dash between the two endpoints. A regu-

∗ The syntax of the example is basically that of the Bash shell, except we have elimi-
nated the prefix sigils that make it easy to recognize variables.
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Figure 3: Tokenizing
(a) Desired Tokenization

Each token is enclosed by a pair of angle brackets. The
subscript text following each closing bracket indicates
the preceding token’s type.

�

and have been used
to represent the whitespace characters newline and
space.
〈if〉KW〈 〉WS〈ifPredicate〉ID〈;〉SEQ〈

�

〉WS
〈then〉KW〈

�

〉WS〈echo〉KW〈"True."〉STR〈;〉SEQ〈

�

〉WS
〈else〉KW〈

�

〉WS〈echo〉KW〈"False."〉STR〈;〉SEQ〈

�

〉WS
〈fi〉KW

(b) Lexical Rules
Each rule specifies how to lexically distinguish
one type of token in terms of a corresponding
regular expression. When more than one rule
matches the input, the earliest is used.

token type regular expression

WS [

�

]+

KW if | then | else | fi | echo

ID [A-Za-z]+

STR "[ˆ"]?"

SEQ ;

lar expression matching any capital letter A through Z, then, is

[A−Z], which is equivalent to (A | B | · · · | Z).

c. When a caret immediately follows the opening square bracket,

this inverts the sense of the bracket-alternation: the listed char-

acters are excluded from matching, but any other character of

the alphabet will match the expression. Thus, [ˆ"] matches any

single character of the alphabet other than ".

The rules’ order is important: earlier rules are assigned a higher

priority than later. For example, since the rule recognizing a keyword,

KW, precedes the rule recognizing an identifier token, IDENTIFIER, if is

tokenized as a keyword rather than an identifier, even though both

rules match the two alphabetic characters i followed by f.
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In truth, the lexer is responsible for more than simply recognizing to-

kens. It works in cooperation with the parser (which we shall describe

next) by feeding it a stream of tokens. Further, it records information

associated with the tokens, often in a global, shared symbol table

associating to each token, or symbol, some information, such as the

text or value of the token and the file and line number where it was

first encountered. It might even use information in the symbol table or

information provided by the parser to make a distinction between to-

kens that it is impossible or exceedingly difficult to make with regular

expressions alone.

For example, if the language of the text being scanned in Fig. 3 (page 43)

required that all functions and variables be declared before use, the

lexer would be able to eschew the ID token in favor of distinct FUNCID

and VARID tokens by using information about the class of the identifier

already stored in the symbol table to distinguish between the two.

Fig. 4 on page 45 is an example of the earlier scanning rules of

Fig. 3 (page 43) adapted to use this approach. We have introduced

two new keywords, var and func, and completely changed the identi-

fier rule. Indeed, our lexing method has become more sophisticated:

there is no longer is simple one-to-one correspondence between reg-

ular expressions and tokens. Instead, matching the input to a regular

expression binds the matched text to a variable, match, and executes

an associated action. This action can affect the environment in which

lexing occurs and use that environment to decide how to classify the

matched text. This occurs here through the variable context, which is

used to determine whether we are declaring a new variable or function

identifier, or whether we should be able to lookup which of the two

the current match is in the symbol table.∗

∗ We have assumed that the parser, discussed next, has taken care of updating the
symbol table so that the lookup will succeed if the variable or function identifier was
previously declared.
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Figure 4: Using the symbol table to tokenize
(a) Desired Tokenization

A new line declaring ifPredicate to be a variable
precedes the input text of Fig. 3. The tokenization
changes accordingly.
〈var〉KW〈 〉WS〈ifPredicate〉VARID〈;〉SEQ
〈if〉KW〈 〉WS〈ifPredicate〉VARID〈;〉SEQ〈

�

〉WS
〈then〉KW〈

�

〉WS〈echo〉KW〈"True."〉STR〈;〉SEQ〈

�

〉WS
〈else〉KW〈

�

〉WS〈echo〉KW〈"False."〉STR〈;〉SEQ〈

�

〉WS
〈fi〉KW

(b) Lexical Rules
When a rule’s regular expression has the highest priority of all those
matching the input, the input matched is stored in match and the asso-
ciated action is taken. Each action ends by returning the token type of
the matched input.

regular expression action

[

�

]+ return WS;

if | then | else | fi | echo return KW;

var context=VARDECL, return KW;

func context=FUNCDECL, return KW;

[A-Za-z]+ if (context == VARDECL)

context=PLAIN, return VARID;

else if (context == FUNCDECL)

context=PLAIN, return FUNCID;

else return lookup(match);

"[ˆ"]?" return STR;

; return SEQ;
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4.1.2 Syntax Analysis

syntax analysis follows lexical analysis. If lexical analysis is con-

cerned with categorizing words by part of speech, then syntax anal-

ysis is concerned with understanding how these parts of speech are

grammatically related and whether the sentences so formed are gram-

matical or not.

Context-Free Languages

In fact, “grammatical” is precisely the word, for the formalism afford-

ing ready syntax analysis is that of context-free grammars. As with

the regular languages, we are able to describe a given context-free lan-

guage either constructively or declaratively. The context-free languages

are a proper superset of the regular languages and a proper subset of

the recursive languages. Roughly, the context-free languages are distin-

guished from the regular languages by their ability to describe “match-

ing bracket” constructs, such as the proper nesting of parentheses in an

arithmetic expression, while the recursive languages are distinguished

from the context-free languages in part by their ability to cope with

context.

Context-Free Grammars

We use context-free grammars to specify context-free languages

declaratively. As with regular expressions and finite automata, context-

free grammars operate in the context of a specific alphabet. The let-

ters of the alphabet are called terminals or terminal symbols.

Context-free grammars augment this alphabet with a finite set of non-

terminals (non-terminal symbols) to be used in specifying

grammatical productions, which function as rewrite rules. To-

gether, the set of terminal and non-terminal symbols are called gram-

mar symbols, as they specify all the symbols used by the grammar.
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Analogous to the start state of the finite automaton is the context-free

grammar’s distinguished start symbol. All words in the language

described by the context-free grammar are derived from the start sym-

bol via the productions in a manner to be described shortly.

Putting these rules together, one arrives at a grammar specification

like the following:

G = (N, T ,Σ,P,S) N = {A,B} T = {a,b} Σ = a,b

P = {S→ A, S→ B, S→ aABb, A→ a | ε, B→ b | ε}

where N is the set of non-terminals, T the set of terminals, Σ the alpha-

bet, and P the set of productions, where→ is read as “produces.” The

symbol to the left of the arrow is called the head of the production,

while those to the right are called the body. For example, in the pro-

duction S → aABb, S is the head of the production and aABb is the

body:

S︸︷︷︸
head

→ aABb︸ ︷︷ ︸
body

Derivation proceeds by substitution of production bodies for produc-

tion heads: for example,

S
S→aABb======⇒ aABb

A→a===⇒ aaBb
B→b===⇒ aabb (4.1)

where =⇒ is read as “derives in one step” and the rule justifying the

derivation is written above the arrow. Taking a cue from regular ex-

pressions, we can also write ?=⇒for “derives in zero or more steps” (all

grammar symbols derive themselves in zero steps) and +=⇒for “derives

in one or more steps,” where the productions justifying the derivation

are implicit in the superscript star; the keen reader should perhaps like

to construct their own explicit, step-by-step derivation. The language
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defined by the grammar is defined to be those strings made up only

of terminal symbols that can be derived from the start symbol.

parse trees We can use a parse tree to represent the deriva-

tion of a word in the language without concern for unnecessary se-

quencing of derivations imposed by our sequential presentation. For

example, our choice to derive a from A prior to deriving b from B

above is irrelevant, but that we first derived aABb from S before per-

forming either of the remaining derivations is not, since the heads of

these derivations are introduced by the derivation from S. We define

parse trees constructively:

a. Begin by making the start symbol the root.

b. Select a non-terminal on the leaves of the tree with which to con-

tinue the derivation and a production for which it is the head.

c. Create new child nodes of the chosen head symbol, one for each

symbol in the body.

d. Repeat from b.

At any point in time, the string of symbols derived thus far – those

on the leaves, read in the same order applied to the child nodes in the

body of a production – is called a sentential form. The process

terminates when a word in the language is derived, as no non-terminal

leaf nodes remain. Fig. 5 on page 49 gives the parse trees created in

deriving aabb from our example grammar.

ambiguity Parse trees represent the derivation of a word with-

out regard to unnecessary sequencing. A given tree represents a given

parse. If more than one parse tree can derive the same word in the

language, the grammar is said to be ambiguous. This corresponds

to the use of a significantly different ordering of productions and po-

tentially even of a different set of productions. The grammar is called
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Figure 5: Growing a parse tree
These figures represent the construction of a parse tree correspond-
ing to the leftmost derivation of aabb given in (4.1). The non-
terminal chosen in step b is underlined, and we have labeled the
arrows between trees with the chosen production.
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ambiguous because, given such a word, it is uncertain which produc-

tions were used to derive it. The grammar we gave above is ambigu-

ous when it comes to the empty word ε, because S =⇒ A =⇒ ε and

S =⇒ B =⇒ ε are both valid derivations with corresponding significantly

different valid parse trees of ε. However, if we were to eliminate the

productions S =⇒ A and S =⇒ B from the grammar, we would then

have an unambiguous grammar for the context-free language com-

prising {ab,aab,abb,aabb} ≡
{
aibj | 1 6 i, j 6 2

}
. The only sequen-

tial choices are insignificant: in deriving aabb, we must have derived

aABb from S, but following that, did we first derive the second a or

the second b?

derivation order While the parse trees for a word in a lan-

guage factor out differences between possible derivations of the word

other than those reflecting ambiguity in the grammar, when perform-

ing a derivation or constructing such a parse tree, we must employ

such “insignificant” sequencing. There are two primary systematic

ways to do so: always select the leftmost nonterminal symbol in step
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b of the parse tree construction process, or always select the rightmost.

These ways of deterministically choosing the next symbol to replace in

the derivation give rise to what are unsurprisingly known as a left-

most derivation and a rightmost derivation; to indicate the

use of one or the other, the derivation arrow in all its forms is aug-

mented with a subscript of lm for leftmost derivation and rm for

rightmost, giving ==⇒
lm

and ==⇒
rm

. Since this is only a matter of choice

in constructing the parse tree, it should be clear that, for any given

parse tree, there exist both leftmost and rightmost derivations of its

sentential form.

Pushdown Automata

We can also specify context-free languages constructively using an ab-

stract machine called a pushdown automaton. A pushdown au-

tomaton is a finite automaton augmented with a stack and associated

stack alphabet. It has an initial stack symbol as well as an initial state.

Its transition function and behavior is complicated by its being inher-

ently non-deterministic. As might be expected, its transition function is

parameterized by the current input symbol, current state, and the sym-

bol currently on top of the stack. However, for each such triple, the

transition function specifies a set of pairs. Each pair consists of a state

and a sequence of stack symbols with which to replace the current top

of stack. For a given triple, the pushdown automaton simultaneously

transitions to all the states indicated by the transition function and re-

places the symbol on top of the stack with the corresponding symbols

for each new state it is in. Each one of these can be treated as a new

pushdown automaton. To “move,” each member of the family of push-

down automata consults the current input, its state, and the top of the

stack, and then transitions accordingly. We again have a choice of rep-
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resenting this either with a table or graphically. While finite automaton

transition diagrams had arrows labelled

〈input symbol〉

the arrows of pushdown automaton transition diagrams are labelled

〈input symbol〉, 〈stack symbol to pop〉/〈stack symbols to push〉

where the convention used for the stack operations is that the symbol

that is to be on top of the stack after pushing is leftmost (that is, the

stack conceptually grows to the left).

There are some casualties of the transition from finite automata to

the increased descriptive power of pushdown automata. pushdown au-

tomata are inherently non-deterministic: they always admit ε-transitions

and can be in a set of states at any given time. This non-determinism is

essential for them to define the context-free languages. The languages

described by deterministic pushdown automata, while still a proper su-

perset of the regular languages, are only a proper subset of the context-

free languages. Further, there is no algorithmic way to produce a mini-

mal pushdown automaton for a given language. This poses a particular

problem for parsing: as with lexing, we would like to use grammars

to describe the syntactic structure and pushdown automata to perform

parsing by recognizing that structure, but we must now find some way

for our inherently deterministic computers to cope with this inherent

non-determinism in a reasonable amount of time.

Parsers

As exaggeratedly hinted at above, while grammars define a language,

parsers are faced with an input that they must characterize as either of

that language or not. They must, in fact, do more than simply check

that their input is grammatical: they must construct an intermediate
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representation of their input to pass on to the next part of the com-

piler.∗

We also mentioned the problem of the non-determinism inherent to

context-free grammars and pushdown automata. So long as we only

face insignificant questions of sequencing, we will have no problem

determining what to do next. Realistic inputs do not require truly non-

deterministic parsing. A program is meant to have a single meaning:

to correspond to a parse tree, not a parse forest. Non-determinism

occurs in parsing a programming language when the available context

is insufficient to predict the shape of the parse tree, and it becomes

necessary to entertain several possibilities simultaneously. Eventually,

more context will be available to resolve the ambiguity, and we can

return to building a single parse tree and abandon the others as false

starts. Problems such as these are likely to affect only part of the input,

and methods have been developed that handle such “temporary non-

determinism” gracefully.

The remainder of our discussion of parsers will focus on several

of the more common of their many types. The level of our discus-

sion will be one of summary, not of definition; for details, the inter-

ested reader is referred to the literature discussed in Section 4.6, Bibli-

ographic Notes.

recursive descent parsers Recursive descent parsers discover

a leftmost derivation of the input string during a left-to-right scan of the

input, whose alphabet, thanks to the lexer, will be tokens rather than

individual letters and symbols. One function is responsible for han-

dling each token; parsing begins by calling the function associated to

the start symbol. They discover the derivation by recursively calling

themselves as necessary. The parser is aware of the current input sym-

bol via what is known as lookahead. Since we are dealing with an

∗ If, indeed, there is a next pass: it is possible to construct one-pass compilers that
translate from source to target in a single pass over the source code.
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actual machine, however, we are not restricted to lookahead of a sin-

gle symbol, though we might prefer to do with only a single symbol’s

lookahead for effiency’ sake. Those grammars parsable by a recursive

descent parser with k tokens of lookahead are known as ll(k): left-

most derivation by left-to-right scan employing k tokens of lookahead.

When recursive descent parsers use one token of lookahead, they act

much like a pushdown automaton. The implicitly managed function

call stack acts as the pushdown automaton’s stack. However, since they

trace out a leftmost derivation with only a limited number of tokens

of lookahead, they must anticipate the proper derivation with minimal

information about the rest of the input stream. This makes recursive

descent parsers one of the most limited forms of parsers, though they

might be the parser of choice in some cases because of the naturalness

of expression they can admit and the simplicity and compactness of

their parsers. Many of the disadvantages of recursive descent parsers

can be overcome by admitting variable tokens of lookahead, with more

tokens being used as needed to disambiguate the choice of production.

precedence parsing Recursive descent parsers are sometimes

coupled with precedence parsers in order to facilitate parsing of arith-

metic expressions. The order in which operations should be carried

out is determined by a frequently implicit grouping determined by op-

erator associativity and precedence. For example, multiplication is nor-

mally taken to have higher precedence than addition, so that 3× 5+ 4

is understood to mean (3×5)+4 = 19 and not 3× (5+4) = 27. The left

associativity of multiplication determines that 2× 2× 2 should be un-

derstood as (2× 2)× 2. This becomes important, for example, in cases

where the operands have side effects: suppose id is a unary function

printing its input and then returning its input unchanged. Assume

further that arguments to operators are evaluated left-to-right. Then

id(1) + id(2) + id(3) will print 123 if addition is understood to be left-
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associative, but it will print 231 if addition is understood to be right-

associative, even though the result of the additions will be identical

due to the associativity property of addition.∗

Operator precedence parsing is preferred over the use of LL(k) gram-

mar rules not only because it is somewhat unobvious how to enforce

the desired associativity and precedence in an LL(k) grammar, but

also because doing so introduces a chain of productions that exist

solely to enforce the desired associativity and precendence relations

between the expression operators. Beyond its use in concert with recur-

sive descent parsers, precedence parsing has mostly been subsumed

by the class of grammars we shall describe next. The central idea

of using precedence and associativity to disambiguate an otherwise

ambiguous choice of productions has lived on in implementations of

parser generators for this later class. Without recourse to a way other

than grammatical productions to indicate precedence and associativity,

grammars would often have to take a form that unnecessarily obscures

their meaning simply to grammatically encode the desired precedence

and associativity relations.

lr(k) parsers The lr(k) – left-to-right scan, rightmost derivation

with k tokens of lookahead – family of parsers is perhaps the most com-

monly used in practice. I say “family” because a number of subtypes

(to be discussed shortly) were developed to work around the expo-

nential space and time requirements of the original LR(k) algorithm.

The class of grammars recognizable by an LR(k) parser is known as

the LR(k) grammars, and it is possible to give a reasonably straight-

forward LR(k) grammar for most programming languages. However,

it was some time before clever algorithms that avoided unnecessary

requirements of exponential space and time were developed, and so

other, more restrictive classes of grammars with less demanding parsers

∗ If argument evaluation proceeded right-to-left, 213 and 321 would be printed in-
stead.
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were developed and deployed. Parser generators targeting these classes

are more limited in terms of the grammars they can generate parsers

for, not in terms of the languages such grammars can recognize: all

parsers of the LR(k) family, where k > 0, accept the same class of lan-

guages; they simply place different, more or less restrictive demands

on the form of the grammars describing those languages.

Where LL(k) parsers create a derivation from the top down by start-

ing with the goal symbol and eventually building a derivation for the

input, LR(k) parsers build a rightmost derivation in reverse by read-

ing in the input till they determine that they have seen the body of

a production and then reducing the body to the head. They eventu-

ally reduce the entire input to the start symbol (often in this context

called the goal symbol), at which point parsing is complete. They

use a stack to store the symbols seen and recognized so far, so in the

course of parsing they carry out a very limited set of actions: shifting

input onto their stack, reducing part of the stack to a single symbol,

accepting the input as a valid word in the grammar, and indicating an

error when none of the above applies. Because of this behavior, such a

bottom-up parser is often called a shift-reduce parser.

slr(k) parsers The earliest and most restricted such class is known

as the simple lr(k), or SLR(k). These parsers use a simplistic method

of determining what action to take while in a given state and reading a

given input that introduces conflicts that more sophisticated methods

would be capable of resolving. In a shift-reduce parser, there are two

possible types of conflicts:

shift/reduce conflicts where the parser has seen what it con-

siders the body of a valid production at this point in the parse

but has also seen a viable prefix of yet another production, so

it cannot determine whether to reduce using the former or shift
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further symbols onto the stack in an attempt to recognize the

latter.

reduce/reduce conflicts where the parser has seen the entirety

of the body of two productions that appear to be valid at this

point in the parse and is unable to determine which to reduce

to.

lalr(k) parsers More sophisticated parsing methods are more

discriminating about what productions are still valid at a given point

in the parse by taking into account more or less of the parsing process

and input seen thus far, so called left context as it is to the left of

where the parser presently is in consuming the input. (In this analogy,

the lookahead symbols could be considered right context, though that

term is never used.) One such method is known as look-ahead lr

(lalr). These parsers can be seen as “compressed LR parsers,” though

this compression can introduce spurious reduce/reduce conflicts that

would not occur in a full LR parser. This has historically been seen as

an acceptable tradeoff for the reduction in table size and construction

time, since any LR grammar can be reformulated as an LALR gram-

mar, but with more sophisticated LR algorithms developed later that

retained the full power of full LR parsers while producing compara-

ble levels of compression wherever possible (meaning that parsing an

LALR grammar with such an LR parser would require the same space

as parsing it with an LALR grammar), such a tradeoff became unnec-

essary, though it remains widespread.

table-driven parsers Whereas recursive descent parsers and

operator descent parsers can be hand-coded, many of the other parsing

algorithms were developed to operate by way of precomputed tables.∗

They explicitly model a finite automaton, called the characteris-

∗ That is not to say that the others cannot also be implemented through tables, simply
that the table method is not felt to be the necessity that it is for these others.
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tic finite automaton; the tables allow the transition function to

be implemented purely by table lookup. As hand-creation of tables

is time-consuming and error-prone, tables for parsing are generally

created algorithmically and the resulting tables used with a driver

that simply does little more than gather the information necessary to

perform the operations specified by the table.

direct-coded parsers Parsers implemented entirely in code

(rather than as a set of tables with a driver) were long seen as some-

thing to be generated only by humans, while parsers generated from a

higher-level grammar description were to be implemented by way of

tables. However, another possibility, often faster and smaller because

of its lower overhead and its lack of a need to encode a rather sparse

table, is to have the parser generator create a direct-coded parser, a

parser that is not table-driven but yet is generated from a higher-level

description rather than being written by hand.

glr parsers LR parsers are restricted to parsing only LR lan-

guages. However, a very similar technique can be used to parse all

context-free languages. generalized lr (glr) parsers are more

general than LR parsers in two senses:

• They are able to parse all context-free grammars, not just LR

grammars.

• Their method of parsing is a generalization of that used in LR

parsers.

They generalize the parsing method of shift-reduce LR parsers by cop-

ing with ambiguity in the grammar by duplicating the parse stack and

pursuing competing parses in parallel. When they determine a partic-

ular parse is in fact invalid, it and its stack are destroyed. If the gram-

mar is in fact ambiguous and multiple parses are possible, this might
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lead to a parse forest instead of a parse tree. Making such parsers

feasible requires some effort, and part of that effort was to replace sev-

eral duplicate parse stacks by what amounts to a “parse lattice” that

share as many grammar symbols as possible as parses converge and

diverge, much reducing the space requirements of the parser as well as

time spent repeating the identical shifts and reduces on different parse

stacks. It is also important to employ similar compression methods as

with the newer LR parser generation algorithms, so that extra space

and time is only employed as strictly necessary to deal with non-LR

constructs.

semantic actions We generally desire to know more than that

a given input is grammatical: we want to create a representation of

the information discovered during parsing for later use. This is done

by attaching semantic actions, to productions in parsers and to

recognized tokens in lexers. Such actions are invoked when the pro-

duction is reduced or the token recognized, and they are used to build

the representation and, in the lexer, to emit the recognized token for

the parser’s use. They also can be used to compute attributes of the

nodes in the parse tree, as discussed next.

4.1.3 Semantic Analysis

semantic analysis, also known as context-sensitive analy-

sis, follows scanning and parsing. Its job is to “understand” the pro-

gram as parsed. Not all elements of the language can be checked by

either regular expressions or context-free grammars; checking these

falls to the semantic analyzer. Approaches to semantic analysis vary

widely; while a formalism that permits generating semantic analyzers

from a higher-level description, as is done for lexers and parsers, exists,
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its use has yet to become widespread. Frequently, semantic analysis is

done purely through ad hoc methods.

A program in truth has two aspects to its semantics, the static and

the dynamic. static semantics are those aspects of the program’s

meaning that are fixed and unchanging. A common example is the

type of variables (though there are languages that employ dynamic

typing). These aspects are particularly amenable to analysis by the

compiler, and information derived from understanding them can be

used to optimize the program. A program’s dynamic semantics

are those aspects of the program that are only determined at runtime.

Nevertheless, a compiler can attempt to prove through analysis cer-

tain properties of the running program, for example, that an attempt

to access an array element that does not exist (the eleventh element

of a ten-element array, for example) can never occur. Some languages

require that the compiler guarantee certain runtime behavior: if it is

unable to provide that guarantee at compile time through analysis,

the compiler must insert code to check the property at runtime. Java,

for example, requires that no out-of-bounds array access occur: any

such attempt must be refused and raise an error. Since these runtime

checks can slow down a program, a frequent point of optimization in

languages requiring such checks is proving at compile-time properties

that enable the omission of as many such checks as possible from run-

time. Many languages, particularly older languages, do not require

runtime checks even where they might be worthwhile, while some

compilers might permit disabling the insertion of runtime checks, an

option favored by some for the generation of final, production code

after all debugging has occurred.

Attribute Grammars

The formalism mentioned above for generating semantic analyzers is

that of attribute grammars. Attribute grammars can be seen as
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an evolution of context-free grammars. They begin by taking the gram-

mar symbols of the grammar and associating to each one a finite set

of attributes. They next take the grammatical productions and as-

sociate to each one a similarly finite set of semantic rules. Each

rule is a function that describes how to calculate a single attribute of

one of the symbols of the production (which attribute we shall call the

target of the semantic rule) in terms of any number of attributes of

any of the symbols of the production. Where the same symbol occurs

multiple times in the same production, subscripts are used to differ-

entiate the different occurrences of the symbol. To refer to a symbol’s

attribute, we follow the name of the symbol with a dot and the name

of the attribute, so that A.x would refer to the attribute x of the symbol

A. These conventions are amply illustrated in Fig. 6b on page 61.

inherited and synthesized attributes Recall that each gram-

matical production has two parts, a single symbol called the head and

a body of some symbols that is derived from the head. The set of at-

tributes of the symbols are likewise partitioned into two disjoint sets,

those that can be the target of a semantic rule when the symbol is in

the head of the production, called synthesized attributes, and

those that can be the target of a semantic rule when the symbol is part

of the body of the production, called inherited attributes.

Consider as an example the second production in Fig. 6b on page 61,

ADDER1 → DEF ’.’ ADDER2. Any attributes of ADDER1 targeted by a semantic

rule in this production must be by definition synthesized attributes,

while any targeted attributes of the other three symbols DEF, ’ . ’, and

ADDER2 must be inherited attributes. If you check the attributes that are

in fact targeted against the table of symbols and attributes in Fig. 6a

(also on page 61), you will find that this is indeed the case.

You might notice in the same table that some entries are prohibitory

dashes. That is because every symbol can have both synthesized and in-
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Figure 6: An attribute grammar
The nonterminals are GOAL, ADDER, VAL, SUM, and DEF. The terminals
are NAME, NUM, and the single characters ., +, and =. The start symbol
is the head of the first production, GOAL.

(a) Symbols and Attributes
Start and terminal symbols are prohibited from
having inherited attributes, hence the dashes. An
empty entry indicates the symbol has no at-
tributes of that type, though it could.

attributes

symbol inherited synthesized

GOAL – total

ADDER defs total

SUM defs total

DEF defs pair

VAL defs amt

NUM – amt

NAME – txt

. –
+ –
= –

(b) Productions and Rules
An unquoted string of non-whitespace characters represents a single
grammar symbol. Characters between single quotation marks represent
themselves as symbols in the production.

production semantic rules

GOAL → ADDER GOAL.total← ADDER.total
ADDER1→ DEF ’.’ ADDER2 DEF.defs← ADDER1.defs

ADDER2.defs← DEF.defs∪ DEF.pair
ADDER1.total← ADDER2.total

ADDER → SUM ’.’ SUM.defs← ADDER.defs
ADDER.total← SUM.total

VAL → NAME VAL.amt← {sndp | p ∈ VAL.defs
∧ fstp = NAME.txt}

VAL → NUM VAL.amt = NUM.amt
SUM1 → VAL ’+’ SUM2 VAL.defs← SUM1.defs

SUM2.defs← SUM1.defs
SUM1.total← VAL.amt+ SUM2.total

SUM → VAL SUM.total← VAL.amt
DEF → NAME ’=’ SUM SUM.defs← DEF.defs

DEF.pair← (NAME.txt, SUM.total)
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herited attributes, except terminal and start symbols, which are not al-

lowed inherited attributes. Terminal symbols are often prohibited from

having inherited attributes so that attribute grammars can be readily

composed to form larger attribute grammars by identifying a terminal

symbol of one grammar with the start symbol of another. Likewise,

they are allowed to have synthesized attributes with the assumption

that the values of these attributes will be provided by some source ex-

ternal to the attribute grammar itself, such as another attribute gram-

mar or the lexer. In terms of a single grammar, the start symbol cannot

have any inherited attributes since it is never part of a production body.

If we compose grammars, the start symbol will still have no inherited

attributes, since we have barred terminal symbols from having inher-

ited attributes.

We could, for example, compose the ADDER grammar of Fig. 6, page 61,

with a NUM grammar for parsing a variety of numerical formats, such as

signed integers and scientific notation. The sole modification we might

have to make to the NUM grammar is to convert the information stored

in its attributes for storage in the sole amt attribute of the NUM symbol

of the ADDER grammar. This easy composition is made possible by the

conventions barring terminal and start symbols from having inherited

attributes. If terminal symbols had to take into account inherited infor-

mation, more extensive modifications of the grammars would often be

required before they could be composed.

the attributed tree In terms of a parse tree, a synthesized

attribute is computed from attributes at or below itself in the parse

tree, while inherited attributes are computed from attributes at their

own level or above them in the parse tree. Thus, the computation of

synthesized and inherited attributes can be viewed respectively as in-

formation flowing up and down the parse tree.
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In fact, the parse tree is central to how attribute grammars are used.

A bare parse tree is the fruit of a context-free grammar. With an at-

tribute grammar, we produce a parse tree wherein every node is dec-

orated with its own instances of the attributes associated to its sym-

bol. Every node where a given symbol appears will have the same

attributes, but the values of the different instances of the attributes can

differ. A parse tree annotated as described with attribute occurrences

is called an attributed tree. Fig. 7 on page 64 provides a small ex-

ample of an attributed tree for a word in the language of the attribute

grammar of Fig. 6 (page 61).

attribute evaluation With the bare parse tree become an at-

tributed tree, the stage is set for us to use the semantic rules to assign

concrete values to the tree’s attribute instances. This process of compu-

tation is known as attribute evaluation. Provided attribute eval-

uation terminates, the attribute grammar formalism defines the mean-

ing of the program (which now makes up the leaves of an attributed

tree) to be the values of the attributes of the start symbol.

This definition of attribute evaluation, however, is purely descrip-

tive. When we look to perform attribute evaluation, things are not so

simple. Attribute evaluation will not necessarily terminate,∗ and deter-

mining an appropriate order for evaluation such that evaluation can

be performed efficiently is nontrivial.

Part of making this formalism usable involves, as with context-free

grammars, finding restricted classes of attribute grammars that are suf-

ficiently powerful to capture the semantic information desired while

still allowing efficient evaluation. Two such classes are the s-attributed

grammars and the l-attributed grammars. S-attributed gram-

mars admit only synthesized attributes. They can thus be evaluated

during a simple bottom-up walk of the parse tree like that performed
∗ A simple example is the production A → B together with the semantic actions
A.x ← B.x+ 1 and B.x ← A.x+ 1, which together cause a loop that repeatedly
increments A.x and B.x.
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Figure 7: An attributed tree
The bottom-most row is external to the grammar. It would be pro-
cessed by the lexer and transformed into the terminal symbol tokens
shown immediately above that row.
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by a shift-reduce parser. L-attributed grammars loosen the restrictions

imposed by S-attributed grammars somewhat. In addition to synthe-

sized attributes, they allow semantic rules targeting the attributes of

a symbol Bk in a production A → B1B2 · · ·Bn to use any attributes

of A or B1 · · ·Bk−1. In terms of the attributed tree, this allows a sym-

bol’s attributes to be computed in terms of those of either its children

(in the case of a synthesized attribute) or those of its parent and the

siblings to its left (in the case of an inherited attribute). Like the S-

attributed grammars, L-attributed grammars admit information flow

from bottom-to-top within the parse tree, but they also allow for left-

to-right information flow. This is a natural match for a left-to-right,

depth-first walk of the parse tree, as occurs during recursive descent

parsing.

Problems faced by practical implementations of the attribute gram-

mar formalism include the management of storage for the multitude

of attribute instances used during evaluation and the amount of at-

tributes that exist solely to share non-local information. Non-local in-

formation is in general a problem with attribute grammars, and while

a symbol table can be used alongside the grammar to avoid this issue,

it is also an end-run around the formalism.

4.2 intermediate representations

Translation begins with a source language and ends with a target, but

those are rarely the only representations of the program used during

compilation. Between the initial representation of the source code in-

put to the compiler and the final representation of the target code out-

put from the compiler, the compiler will use various intermediate

representations (irs). These need not resemble either the initial

or final representation in the least, and the compiler is not restricted

to use only one intermediate representation. Intermediate representa-
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tions are, in a sense, common, private languages used within and be-

tween different parts of a compiler that support the operation of those

parts.

The intermediate representations chosen affect all parts of the com-

piler, both on the superficial level of simple representation of the code

and on the deeper level of how the compiler carries out its transla-

tion and even how much the compiler can prove about the runtime

behavior of the code to exploit in optimizing it.

For all its importance, intermediate representations remain more a

matter of craft than science. Many IRs have been used – estimates of

two for every compiler ever created are likely conservative – , but this

myriad of IRs nevertheless is susceptible to categorization along vari-

ous axes. Two such axes are the form of the intermediate representa-

tion and its level of abstraction.

4.2.1 Form

Intermediate representations divide broadly into classes based on their

structure: those whose structure is linear, and those whose structure is

graphical, an artificial term meaning “graph-like” that has nothing

to do with graphics or visual display.

Linear

Linear IRs resemble the structure of most programming languages,

in that they have an implicit sequencing: begin at the beginning and

process each instruction in turn till the last instruction is processed.

Jump instructions of some form or another – either as higher-level,

structured control flow constructs such as while and for, or as lower-

level jumps and branches to labeled statements (or, at an even lower

level, to statements a certain offset away) – can be used to explicitly

alter this implicit order.
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Linear IRs have the advantage of being easy to represent for debug-

ging or otherwise observing the actions of the compiler. They can also

be easily written out to a text file. They simply become lines of text.

Their flat, linear structure can also be a disadvantage. They have no

easy way to share identical lines between sections beyond threading

through them again via jumping. This can inflate the size of the IR

code and hide redundant computations. At the same time, because of

their similarity to most target languages, a linear IR can be a very good

choice for when a compiler must finally perform target code genera-

tion.

Graphical

Graphical IRs are so-called because they represent the program as a

graph with arcs and nodes rather than as a large, linear sequence. De-

pending on the graphical IR used, this can obscure control flow, but

it can also represent higher-level structure than is possible in a lin-

ear IR. Tree-based IRs suffer from the same issues of size and repeti-

tion of common substructure as textual IRs. Graphical IRs based on

directed acyclic graphs, which can be thought of as trees that

admit merging of branches,∗ can avoid both of these faults, though

since, in imperative programming languages, x at one point in the pro-

gram need not be the same as x at another, the textual identity of two

repetitions of compute(x) may not actually be a sign of redundant com-

putation. Graphical IRs always introduce a question of representation:

many data structures can be used to represent graphs and many algo-

rithms can be used to carry out the same operation, and each choice of

data structure and algorithm has its own tradeoffs.

It is also not convenient to represent a graphical IR as some form

of output for human consumption; the IR must either be sequenced

∗ Or, if you are more mathematically inclined, can be thought of as directed graphs
restricted not to have cycles, that is, a sequence of arcs leaving one node that can
be traversed obeying their direction in order to return to the initial node. It is clear
which viewpoint prevailed in the name of the structure.
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and encoded into a linear form, or more complex and time-consuming

techniques must be employed to create a pictorial representation. This

latter is not an option for storing information for the compiler’s con-

sumption: the IR must then be encoded into a linear representation,

though the compiler does not require a textual representation – a novel

binary representation developed to suit the compiler’s needs might in

this case be the better choice. Regardless of problems of representation,

many operations performed by the compiler are best expressed as op-

erations on a graph, and a graph is often the most natural form to view

the code from, as in the control flow graph that graphically de-

picts blocks of sequentially executed code (so-called basic blocks)

connected by directed arcs to blocks that control might transfer to.

4.2.2 Level of Abstraction

intermediate representations can also be classified by their level of ab-

straction. Some levels of abstraction are more appropriate for the ap-

plication of some optimizations than others. Some optimizations can

usefully be used at many levels of abstraction, while others can only

be used at a certain level of abstraction: for example, optimizations

dealing with register usage require that register usage be exposed by,

expressed in, and directly manipulable through the intermediate rep-

resentation. In this case, only a low-level intermediate representation

will do.

High-level intermediate representations are frequently very close to

the source language. They often include direct representations of struc-

tured control flow and indexed array accesses. However, much like the

source language itself, they are not very suitable for the application

of many optimizations, so they see only limited use within a com-

piler. An example of a high-level linear intermediate representation

would basically be a simple high-level programming language. A com-
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mon high-level graphical intermediate representation is the abstract

syntax tree (ast). An abstract syntax tree is something of an abbre-

viated parse tree; it omits “uninteresting nodes” and eliminates the

lower-level information of the parse tree in favor of a more semanti-

cally relevant and concise form.

Mid-level intermediate representations are much like high-level in-

termediate representations, except that they will generally require ex-

plicit computation of array accesses and eliminate structured control

flow in favor of labels, jumps, and branches. It is very possible to blend

high- and mid-level intermediate representations.

Low-level intermediate representations expose many more details

about the target language and target machine. While this strongly sug-

gests use of what is virtually the assembly language of the target ma-

chine, it is still possible to employ a graphical intermediate represen-

tation. Such an intermediate representation will have to provide a way

to indicate indirection through memory addresses (in the jargon of C

and its relatives, this would be called “pointer dereferences”).

4.2.3 Static Single Assignment Form

static single assignment (ssa) form is something of a hybrid

intermediate representation. It can be used at any level of abstraction

that represents explicit variables. It aims to make explicit which def-

inition of a variable each use refers to. It does this by treating the

redefinition of a variable as the definition of a new variable; the dif-

ferent variables created by variables that were multiply defined in the

original intermediate representation are often presented as subscripted

variable names, so that a0 would correspond to the original definition

of the variable a, and a1, a2, and so forth to subsequent redefinitions

of this variable.
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To put a program in ssa form, one begins with a linear intermediate

representation. One next constructs around this a control flow graph.

If you draw out a few control flow graphs, this will demonstrate an

obstacle to putting a program in static single assignment form: what

do we do when two different definitions of the same variable could

prevail at the same point in the program? This problem motivated the

most peculiar element of ssa, phi functions. These are used to

deal with control flow that would otherwise defeat the aim of every

variable in every block having a single, unambiguous referent. When-

ever two definitions of a variable can reach the same block, the variable

is considered to be redefined with the appropriate definition based on

which in-arc control flow enters the block from. Thus, if both a0 and

a1 could reach the same subsequent use of a in the initial intermedi-

ate representation, a phi function would be introduced to supply the

appropriate definition of a:

a← φ(a0, a1)

4.2.4 Symbol Tables

We include along with the intermediate representation the tables of

information maintained by the compiler. The most prominent of these

is the symbol table, which records information on all symbols –

variables, function names, and the like – in use in the program. The

type of information in the symbol table reflects where in the compila-

tion process the compiler is and partially determines the level of the

current intermediate representation. Basic information is usually gath-

ered through cooperation between the scanner and parser and is often

necessary for and augmented during static semantic analysis. Other

parts of the compiler will introduce further annotations to the sym-

bols. The information stored for a symbol might include details such
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as the name, storage class (statically allocated, dynamically allocated,

or created and destroyed along with a procedure), type, size, and much

more. Use of a symbol table is in some senses analogous to allowing

all semantic rules access to the attributes of the goal symbol: the ta-

ble provides a way to readily aggregate information collected from a

variety of places, in a variety of ways, at a variety of times.

4.3 middle end : optimizing the ir

The middle end comes, as one might expect, between the front and

back ends. Since it follows the front end, it has at hand the program

in some form of intermediate representation that encodes, not only

the program, but useful information about the program. It precedes

the back end, since its efforts can go some way towards easing the

work of the back end. The purpose of the middle end is, given the

program in some form, to work with that, possibly by manipulating it

through various intermediate forms, to optimize the program. This is a

rather vague aim with many possible interpretations, and this variety

of interpretations is reflected in the variety of middle ends.

What does it mean, to optimize a program? In some sense, the entire

compiler’s work is an optimization of the program: it is given source

code, a static, lifeless description of a program, and it produces a di-

rectly executable description of a program. This is the most significant

improvement of all that a compiler makes. It is not surprising, then,

that it took some time for the middle end to become a distinguished

part of compiler architecture.

In general, though, when we speak of optimization without any

clarification, we are talking about optimization for runtime speed. A

program that is slow to respond is frustrating, and a program that is

slower than necessary is wasteful of its users’ time. In the past, when

space was at a premium, it was acceptable to trade off speed for a
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smaller code size: a program you cannot fit in the available memory is

no more executable than the original source code and is even more use-

less; you can at least read and learn something from the source code.

Optimizations for code size are still important when it comes to limited

memory situations like those encountered in embedded systems and

in situations where the resultant program must be transmitted through

a low-bandwidth channel. In addition to code size, space optimization

can also attempt to minimize runtime usage of space. A software de-

veloper working on a program will want a completely different sort of

optimization, one that enables the easiest debugging and most helpful

profiling.

Speed, space, debugging, profiling – doubtless you could come up

with more optimization goals. While these goals of optimizing one or

another property of the program sometimes align, they also frequently

compete. Different compilers will be better or worse at different kinds

of optimization. Some will let you configure the optimizations they

perform, though their inbuilt preference for one or another kind of

optimization will still show itself in the diversity and quality of op-

timizations of the different kinds available. Sometimes, the available

optimizations can be switched on and off in ways that would mean

something to the casual user, like letting the user specify different lev-

els of optimization or that the end product should support debugging,

for example, the gnu compiler collection’s (GCC’s) family of optimiza-

tion flags -O, -O0, -O1, . . . , -O3 and its debugging family beginning

with -g. Sometimes, the optimizations can only be switched on and

off in their own cryptic language; some examples from GCC would be

-ftree-dominator-opts and -fgcse.

We will be focusing on optimizations for speed, but even there, there

is much room for variation. Optimization happens piecemeal: each op-

timization attempts to produce a specific sort of improvement. Some

improvements can hinder others. Some complement each other. Of-
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ten, the interaction of two optimizations cannot be predicted, since the

specifics of their interaction will depend on the target architecture and

the function being compiled. When you consider that a whole host of

optimizations is going to be performed, some of them multiple times,

it becomes clear that the question of which optimizations should be

performed when is not a trivial problem.

Optimizations are particular to their purpose and the type of pro-

gram representation they work with. We discuss optimizations for im-

perative languages in Chapter 9, optimizing and the optimizations

used in compilers for two different functional languages in [sections

to be written].

4.4 back end : generating target code

The back end is responsible for completing the work of a compiler. It

receives the program in some intermediate representation, itself might

construct various further intermediate representations of the program,

and ultimately produces the final representation, the program in the

target language. The intermediate representation expresses a compu-

tation in a form understood by the compiler. The back end must take

this and express it in the target language. This requires finding trans-

latable units and recording their translation, then sequencing these

translations for the best effect. This translation must obey whatever

resource limits exist in the target language.

Here, we will focus on an instruction-set language as the target lan-

guage. In this setting, the task of choosing how to represent the ele-

ments of the intermediate representation in the target language corre-

sponds to instruction selection; ordering the translations corresponds

to instruction scheduling; and working within the limits of the target

language corresponds to register allocation.∗

∗ This is true if the intermediate representation treats all data as being in registers
except when it cannot. If the intermediate representation instead leaves all data in
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These tasks are not cleanly separated. Choices made in each can (and

when they cannot because of particular architectural decisions, they

perhaps should) affect the others. The instructions selected to express

a particular subcomputation can increase or decrease the demand on

registers, which can require instructions be inserted to free up registers

for other computations. The introduction of new instructions would

strongly suggest that the whole sequence of instructions be resched-

uled, which can again introduce problems with register load. Never-

theless, we will discuss them separately, because that is how they are

best dealt with.

4.4.1 Instruction Selection

Instruction selection provides the basic material of the program in the

target language. While instruction scheduling and register allocation

are necessary for correctness, they simply rework the instructions gen-

erated in instruction selection.

Instruction selection is tasked with bridging from an intermediate

representation to the actual target language. As with bridges, the nearer

one side is to the other, the easier it will be to bridge the gap: the closer

the intermediate representation is to the target language, the easier the

job of instruction selection. If the intermediate representation is not

very low-level, it will be necessary to convert it to something low-level.

This will likely not be a very clean conversion if left to so late in com-

pilation; there will be a lot of code meant to work around possible

problems that may or may not be present because the results of earlier

analyses that matter at a low level were not represented in the inter-

memory and moves it into registers for only as long as necessary, then register

promotion, which is the process of figuring out what data can be promoted from
storage in memory to storage in register and then promoting it, is a better word for
what occurs than register allocation. This promotion step is more a matter of taking
advantage of the power of the language rather than one of restricting the translation
to obey the language’s limits. We will discuss register allocation here, but similar
techniques apply to register promotion.
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mediate representation. If the intermediate representation is low-level,

but its architectural model differs from that of the target platform – the

intermediate representation is stack-based or resembles the assembly

language of a RISC machine, while the target platform is a CISC ma-

chine, say – it will be more difficult to perform instruction scheduling.

However difficult it might be, the same basic ideas suffice for in-

struction selection. To avoid clouding the exposition, we will assume

the low-level intermediate representation that enters instruction selec-

tion is tree-based. A simple approach would simply walk the tree and

generate, whenever possible, general instructions that ignore related

nodes. A more complex approach would attempt to use local opti-

mization and awareness of related nodes to build up a sequence of

instructions.

A rather different approach uses a technique called peephole opti-

mization that was originally developed to perform some last optimiza-

tions on the target code. It used a library of patterns to simplify a small

window, or peephole, of a few instructions at a time. By scrolling this

window through the entirety of the target code, less efficient code pat-

terns could be replaced with more efficient counterparts. The limited

window size keeps the process very quick, but all the same, it is able

to perform some useful optimizations.

A Simple Tree-Based Approach

The simplest approach would generate instructions during a single

tree walk. This would not be much more complicated than flattening

the tree. It would also not produce very good code, since it would

either make no use of context or only very limited use. Context is

essential to producing a decent instruction sequence. A number of in-

struction sequences can be used to encode even straightforward arith-

metic statements. Consider x = y + 4. Focusing on one node at a time,

a RISC-like instruction sequence might load y into a register, load 4
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into a register, sum those values and store the result in yet another

register, which becomes x.

ry ← y

r4 ← 4

ry+4 ← add ry r4

rx ← ry+4

If we consider a bit more of the tree, we might load the value of y into

a register, then use an immediate addition operation to compute y + 4

and store the result into a register that represents x.

ry ← y

rx ← addi ry 4

Naïvely generating code to access array elements (which is how lo-

cal variables are frequently represented at a low level in a program)

can result in many redundant computations as part of the offset from

the start of the array is calculated and recalculated and shared ele-

ments of the computations are not reused. Trying to eliminate redun-

dant computations significantly complicates the code with special-case

optimizations. Traveling any distance along this route of attempting to

hand-optimize a simple scheme strongly suggests that more complex

methods be employed. Fortunately, more complex methods are avail-

able.

Tree Pattern-Matching

Tree pattern-matching methods are instruction selection methods that

use a store of tree patterns to build instructions. A common approach

is that of bottom-up rewrite systems (burs). Bottom-up rewrite

systems work by tiling the tree with a stock of predefined patterns. As
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each node is subsumed by a pattern tile, a choice is made based on

the tiles of its subtrees that minimizes the cost of the tiling. The costs

can be fixed or allowed to vary dynamically during the rewriting, say,

to reflect the demand on registers introduced thus far. The costs can

represent whatever it is one wishes to optimize for during instruction

selection: code size, power consumption, execution time, or whatever

else.

The patterns and costs used by a bottom-up rewrite system in tiling

the tree can readily be represented in a table, which suggests the use of

“code generator generators” similar to the lexer and parser generators

used in producing the front-end, and such do exist. The rewrite rules

make use of context-free grammars. Productions represent the shape

of the tree. Costs are associated to each production, along with code

templates. This is quite similar to an attribute grammar, and a bottom-

up rewrite system likely could be described in that framework.

To tile the tree, we work from the bottom up, considering one node

(as the root of a subtree) at a time. The tiling proceeds by identifying

productions whose bodies match the subtree headed by the node cur-

rently under consideration. The least costly production is selected, and

we move on to another node and its subtree. All the information we

need know about a subtree is encoded in the head of the production

selected when its root was considered. Once we have tiled the entire

tree, a traversal fills in the code templates and records the instruction

sequence.

This tree pattern-matching process is highly suggestive of number

of other processes, which suggests adapting their techniques to fit this

purpose. There are the classic pattern matchers, the finite automata;

the context-free grammar component as well as the bottom-up method

suggests adapting parsing techniques; a tree flattened into a string

could perhaps be attacked using string matching methods (which, in

many cases, ultimately end in use of finite automata); or, now that
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the problem is better understood, we can hand-code a tree pattern-

matching program.

Peephole

Peepholes are generally thought of in terms of peephole optimiza-

tion, as briefly described at the start of our discussion of the back

end. However, their methods can also be used for instruction selection

alongside optimization. The problem again reduces to pattern match-

ing, but unlike in our discussion of tree pattern-matching, we assume

the intermediate representation used for pattern matching with a peep-

hole is linear, like the assembly code instruction sequences that peep-

holes were intended to optimize.

Instruction selection through a peephole begins by transforming the

intermediate representation to an especially low-level form that mod-

els all the side-effects of instructions on the target machine. The peep-

hole is used to simplify this instruction sequence and then to match

patterns in this simplified sequence. These patterns are associated with

code in the target language. Unlike the bottom-up methods used for

trees, here the patterns are matched linearly and sequentially (visually,

from top to bottom in the normal way of writing code).

What kind of simplifications can be seen through a peephole? Within

a peephole, we can avoid unnecessary storage of temporary values in

registers by substituting the value itself in place of its register in oper-

ations using the register. We can recognize a store followed by a load

of the same value. Some simplifications might enable other simplifi-

cations. If we give the simplifier knowledge of when a given value is

used by preprocessing the expanded low-level IR, we can jump back

up and eliminate computation and storage of a value if later simplifi-

cations eliminate all its uses. Control flow complicates matters: should

we use a strictly static window, or should our window include instruc-

tions that might follow during execution? Should we look at all uses
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of a value together, ignoring intervening instructions, and proceed

that way? The basic idea is amenable to considerable sophistication;

the pattern-recognition and simplification part is, as with tree pattern-

matching, also producible through a generator, at least as far as its

basic elements go.

Clever implementation can enable the instruction selector to learn

about simplification patterns. One can use well thought-out heuristics

to quickly generate and test a variety of instruction sequences of var-

ious costs, simply by pasting together operations. Sequences that do

no have the same effect as that identified for improvement are quickly

discarded. Guided by a skilled compiler implementor and a suitable

sampling of programs, this exhaustive search approach can be used

during development to generate a sophisticated library of simplifica-

tion patterns for later use.

4.4.2 Instruction Scheduling

Instruction selection produces a sequence of instructions, but its con-

cern is generating instructions that can carry out the needed compu-

tations, not making sure all the instructions will work together: Does

a use of a value come too soon after its definition, while the value is

still being computed and not yet available? Will this introduce an error

in the program, or simply unnecessary delay? Instruction scheduling

worries about problems like these. It tries to ensure the selected in-

structions will work well together by reordering them. Its prime direc-

tives are to enhance instruction-level parallelism and reduce the time

required by the program. It works at the block-level so that it does not

have to deal with the consequences of control flow. It is hoped that

stitching the scheduled blocks together will result in a good enough

overall schedule, and this hope is generally realized.
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Listing 4.1: Example of control dependence

bgtz rx → TARGET
instructions...
TARGET: instructions... �

Listing 4.2: Example of data dependences

1 rx ← 4
2 ry ← rx + 1
3 rz ← rx × 5
4 rx ← 5 �

What limits are placed on reordering? These limits are best expressed

in terms of dependences between instructions.∗ We always speak of

the later instruction as depending in some way on the earlier. There are

a variety of ways one instruction can depend on another. Perhaps the

most obvious sort of dependence is control dependence, when

a sequence of instructions only executes if some condition is met. For

example, in listing 4.1, the instructions between the first line and the

line labeled TARGET are control dependent on the first line’s instruc-

tion, which says to branch to the instruction labeled TARGET if the value

in register rx is greater than zero, since their execution depends on

whether the first line sends the flow of control immediately to TARGET,

skipping over them, or not.

Reordering also must respect data dependences in the initial

instruction sequence. To understand data dependence, it is necessary

to think of an instruction as receiving input and producing output,

which it stores in an output location, frequently a register. For example,

the addition instruction in line two of listing 4.2 takes as input rx and

1, produces their sum, and stores that value in the register ry.

There are several types of data dependence. A true data depen-

dence exists between two instructions when one requires a value cre-

ated by another, that is, an input of the one is the output of the other:

∗ We do indeed mean “dependence” (plural “dependences”) and not “dependency”
(plural “dependencies”).
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we cannot use a value before it has been defined. Such is the case in

lines one and two of listing 4.2, since the value stored in ry on line

two depends on the value of rx defined in line one. Two instructions

are output dependent when both modify the same resource, that

is, when both have the same output location. In listing 4.2, the instruc-

tions on the first and fourth lines are output dependent, since both

store to rx.

You might wonder whether it is also possible for instructions to

be input dependent. It is not, as instructions are not kept from hav-

ing their relative orders inverted simply because they share an input:

whether line two of listing 4.2 precedes line three or line three precedes

line two, both orders will result in the same values being stored to ry

and rz. However, the idea can be useful, so some compilers will track

it nevertheless as a sort of input pseudo-dependence.

In addition to these various kinds of data dependence, reordering

must respect or eliminate antidependences. These are dependences

between instructions that exist, not because of data flow, but because

of conflicting uses of the same resources: specifically, one instruction

is antidependent on a preceding instruction when its output location

is used as input to the earlier instruction. The dependence is created

solely by the reuse of the location: if the later instruction were to out-

put to a different location and no other dependence existed between

the two instructions, then they could be freely reordered with respect

to each other. In listing 4.2, the instruction on line four is antidepen-

dent upon both preceding instructions.∗

These dependences can be used to create a dependence graph

(also called a precedence graph) representing the program, where

each instruction is a node and there is a directed edge from a first

node to a second whenever the second depends on the first. The graph

is used along with information about the target platform to produce a
∗ Looping structures present a mess of dependence problems of their own. However,

we do not discuss them here, as they are generally the target of analysis and opti-
mization in the middle end.
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schedule, which associates each instruction-node with a positive inte-

ger specifying the cycle in which it should be issued. The information

needed is the functional units required by the instruction and the num-

ber of cycles the instruction takes to execute, called the delay of the

instruction. If no value is required in the schedule before it is ready, the

schedule will be correct. If there are never more instructions executing

than the functional units can handle, and there are never more instruc-

tions dispatched in a cycle than is possible for the target platform, the

schedule will be feasible. Within these constraints, we must attempt

to schedule the instructions so that all dependences are respected and

the cost of the schedule (often, the amount of time it requires) is mini-

mized. This, of course, is an ideal that we cannot guarantee in practice.

The graph can be usefully annotated with the cumulative delay to

each node starting from a root. The path from a root of the dependence

graph to the highest-numbered leaf is called the critical path and

critically determines the length of the schedule: no matter what, it can

take no less time than the annotation at the leaf endpoint of the critical

path.

List Scheduling

The dominant paradigm for scheduling is called list scheduling.

The basic idea of the method is, first, to eliminate antidependences by

renaming the contested resources; next, to build the dependence graph;

then, to assign priorities to each operation (for example, as determined

by the cumulative delay at that operation’s node); and, finally, to sched-

ule the instructions in priority order as their dependences are fulfilled.

This last step simulates the passage of cycles in order to track when

operations can safely be scheduled and record the resulting schedule.

Clearly, there is a lot of detail missing from this sketch. The prior-

ity scheme used, for example, has an important effect on the result-

ing schedule, as does the tiebreaking method between operations with
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identical priorities. There is no consensus on the best priority scheme,

likely because there is no such thing. Further, we can perform schedul-

ing either forward or backward. Working forward, we first schedule

the instruction we want to execute in the first cycle, then repeatedly

update the cycle counter and select the next instruction to execute. Be-

fore scheduling an instruction, we must check that sufficient cycles

have passed that all instructions it depends on have completed. In the

dependence graph, then, forward scheduling works from the leaves to

the roots. Working backward, roots are scheduled before leaves, and

the first operation scheduled executes last. We are then scheduling

each instruction before the instructions it depends on. When we were

working forward, before scheduling an instruction we would check

that all instructions it depended upon had been completed in the sim-

ulation; now, working backward, we first schedule an instruction and

then delay scheduling each instruction it depends on until we are far

enough in advance of that instruction in our simulation that its result

will be available to the already scheduled instruction. Neither forward

nor backward scheduling is always best; since scheduling is fairly eas-

ily done, often a block will be scheduled both forward and backward,

possibly a few times using different priority schemes, and the best of

the schedules produced is then chosen.

There is also a lot of room to elaborate the method. Why limit our-

selves to scheduling block-by-block? We can produce a better overall

schedule if we look beyond a basic block. If either of two blocks can fol-

low a single block, each successor block will work best with one or an-

other scheduling of the predecessor, but we can only schedule the pre-

decessor in one way. How should we decide which successor should

determine the schedule of the predecessor? If we were to generate

code for the region we wish to schedule, run it several times, and track

which blocks execute most frequently, we could make an informed
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decision. Some schedulers take this tack, called trace scheduling

since it makes use of an execution trace, or record of execution.

4.4.3 Register Allocation

Register allocation is the final step of code generation. Instructions

have been generated and scheduled. Now, it is time to ensure they

meet the platform’s register constraints. The most fundamental con-

straint imposed on registers is the number available, but others must

also be taking into account. These include constraints on register usage

imposed by calling conventions and those imposed by register classes.

Register allocation is, in fact, an umbrella term for two closely re-

lated tasks: register allocation, which is the task of deciding

which values should reside in registers when each instruction is issued,

and register assignment, which takes the values to be allocated

to registers and decides which register should hold which value when

each instruction is issued.

Often, all values cannot be kept in registers. Dumping the register’s

contents to memory is called register spilling. Spilling a regis-

ter is necessary but expensive. At each use, the data must be loaded

into a “scratch register,” and any changes to the data must be stored

back to memory in order to free up the scratch register to load other

spilled values. Sometimes, it is cheaper to recompute a value at each

use than to go through the expense of spilling it and loading it back.

Recomputation in place of register spilling is referred to as remate-

rialization: rather than using previously provided “material,” we

are recreating it as needed.

Clearly, register allocation directly affects register assignment. Un-

fortunately, the interaction of the two concerns – what values should

be kept in registers, and which registers should they be kept in – are

not cleanly separated. Since we might be bound to assign particular
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sorts of values to particular registers, issues of assignment can affect

register allocation: we might be unable to use floating point registers

for anything except floating point values, and a calling convention will

likely specify that arguments to the procedure must be stored in spe-

cific registers, not just in some registers. Since marshaling data to and

from register and memory itself requires registers, we do not even have

the whole register set available.

The overall process of register allocation (which is what we shall

mean by “register allocation” from now on), then, is nontrivial.∗ As

with much in compiler design, we must resort to heuristics. We wish

to minimize the amount of register-memory traffic by maximizing the

amount of data kept in registers. A simple register allocator would

consider only a block at a time. At the end of a block, it would spill

all its registers. (A following optimization pass could attempt to re-

move unnecessary spills.) A top-down approach would estimate how

many times a value is used in the block, allocate those to registers

throughout the entire block, and spill the rest of the values used in

the block to memory. A bottom-up approach would work through the

block, instruction by instruction, and ensure that the operands of each

instruction are in register. Where possible, it will use values already in

register and load values into free registers. When all registers are full

and a value not in register is needed, it will spill the value whose next

use is farthest from the current instruction.

The top-down approach works, in a sense, by using detailed in-

formation about the block to set an overall policy, which it then fol-

lows. The bottom-up approach also uses detailed information about

the block, but it makes its decisions instruction by instruction, rather

than following an overall plan for the block. Its only plan is the same
∗ In fact, it ends up being NP-complete for any realistic formulation of the problem. A

polynomial-time algorithm exists for the simplest of cases, as well as for ssa form
(see Section 4.2, Intermediate Representations for a description of ssa form), but
virtually any additional complexity – including the translation from ssa into the
processor’s instruction set language – promotes the problem to NP-completeness.
Naturally, any time you actually find yourself needing to perform register allocation,
you likely will not be dealing with the polynomial-time case.
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for all blocks: make the tough decisions (which values to spill, which

registers to use?) when it has to. This top-down–bottom-up dichotomy

persists through all types of register allocators, though much the same

effect can be achieved either way.∗

More complex algorithms are required to handle register allocation

across greater regions than single blocks. Modern register allocation al-

gorithms often draw their inspiration from the graph coloring problem.

Because of this, they are called graph-coloring register allo-

cators.

Graph-coloring register allocators begin by reformulating the prob-

lem of register allocation in terms of live ranges. A definition of a

variable is live until it is killed by a redefinition of the same vari-

able. For example, if I assign 5 to the variable n, that definition is live

until I later assign another value to n, say 6. The extent of the pro-

gram where the definition is live is its live range.† All uses of the vari-

able within a definition’s live range refer to that definition. These live

ranges are in competition for the limited supply of registers. Where

they overlap, they are said to interfere with each other. From this, it

is simple to construct an interference graph: each live range is a

node, and two nodes are joined by an edge whenever their live ranges

interfere. Coloring a node corresponds to assigning its live range to a

register.

After we have constructed the interference graph for a region, the

nodes divide into two fundamental groups. Those nodes with more

neighbors than there are registers are constrained, while those

with fewer are unconstrained. This captures a basic distinction:

∗ It is an artifact of our simple description that the top-down allocator will dedicate
a register throughout the entire block to a value heavily used in the block’s first
half but unused in its second, while the bottom-up allocator will choose to spill the
value once it is no longer needed. Getting the top-down allocator to behave similarly,
however, would make it less simple.
† In this case, we are concerned with the static extent, or scope, of the definition.

This is made explicit when the program is represented in static single assignment
form. There is a corresponding notion of dynamic extent, which is the period of
time when the definition is live at runtime, but this does not concern us here except
as it is reflected in the definition’s static extent.
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the live ranges represented by unconstrained nodes can always be

assigned to a register; those represented by constrained nodes must

compete with their neighbors in the interference graph for the limited

number of registers.

A top-down graph-coloring register allocator will use this graph

to prioritize the live ranges. It will first try to color the constrained

nodes based on the estimated cost of having to spill their associated

live ranges. After that is done, it is trivial to color the unconstrained

nodes. The devil lies in how to estimate spill costs and how to handle

cases where this process results in nodes that cannot be colored.

Rather than using an overall estimate to determine the nodes’ color-

ing priorities, a bottom-up allocator will work directly from the inter-

ference graph, node by node, to decide the order in which it will try to

color the nodes. For example, it might pluck them out one by one, be-

ginning with the unconstrained nodes, and place them on a stack.∗ To

color the nodes, it works through the stack from top to bottom, grad-

ually rebuilding the interference graph. It removes a node from the

stack, reinserts it and its edges into the graph, and attempts to color it

in the graph as it stands then.

If this process succeeds in coloring all nodes, register allocation is

complete; otherwise, the bottom-up allocator must select nodes to spill

and then insert the code to handle the spilled value.† If it has reserved

registers to deal with this as we assumed earlier, allocation is complete,

though such reservation might create a need to spill. On the other, if it

has not, the changed program, which now incorporates the spill code,

must undergo analysis and allocation anew.

∗ The bottom-up allocator would remove unconstrained nodes first for two reasons.
For one, removing them first puts them at the bottom of the stack, which delays col-
oring them till the end. For another, removing them reduces the degree, or number
of neighbors, of neighboring nodes in the resulting graph. A node that was previ-
ously constrained might thus become unconstrained.
† An alternate tactic is live range splitting. Instead of spilling an entire range, we

split the range into two smaller ranges. This might divide the uncolorable node into
two colorable nodes. If one split does not, further splitting eventually will: spilling
the entire range corresponds to the finest splitting of all, where each use occurs in
its own range.
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Unfortunately, the interference graph does not capture all aspects

of the problem, and so graph coloring does not provide a complete

solution. These weak spots are also the points where graph-coloring

register allocation can most be improved. This lack of a perfect fit also

leaves room for other approaches with other inspirations, such as jig-

saw puzzles: what is the best way to assemble the live-range pieces?

In the end, we do not need to find the absolute best register allo-

cation. To carry out the computation specified by the original source

code, it suffices to find a register allocation acceptable to the user. With

that done, compilation can be considered complete. The program’s

odyssey through the compiler, its journey in many guises through the

many parts, is at an end.

4.5 bootstrapping , self-hosting , and cross-compiling

Compilers have their own chicken-and-egg problem: Compilers are

programs written in some language that compile programs written

in a language, potentially programs written in the same language in

which they themselves are written. Compilers written in their own

source language are known as self-hosting compilers and are a

particularly puzzling instance of this problem. Further, compilers run

on a variety of machines: where did the first compiler for a new ma-

chine come from? These problems have several solutions. One can go

about growing a compiler incrementally, by way of another compiler,

by way of an interpreter, or by cross-compiling.∗

To grow a compiler incrementally, one implements a compiler for a

subset of the source language in a language understood by an exist-

ing compiler (or even in machine language) and then uses this core

language to write a compiler that can translate a greater subset of the

∗ t-diagrams are frequently employed to explain these methods, but I have always
found them more confusing than helpful and omit them here. The t encodes the
three relevant issues of a compiler: the source language to the left, the target language
to the right, and the machine the compiler runs on at the base.
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source language; this can be repeated as many times as necessary to

encompass the entire language.

One can implement a compiler for the desired source language in a

language already understood by a running compiler. Once that com-

piler has been used to generate a compiler for the new source language,

a compiler for that language can be written using the language and

compiled with this compiler to obtain a self-hosting compiler.

If an interpreter for the language exists, a self-hosting compiler can

be written immediately and run in the interpreter on its own source

code to create a compiled version of itself. Due to the comparative

slowness of interpreted code next to compiled code, it may be neces-

sary to interpret only a skeleton of the compiler and use that to com-

pile only the same skeleton. This skeleton, for example, might omit all

optimization and use only the simplest of algorithms for code gener-

ation. Once a skeleton compiler exists, it can be run on code for the

full compiler, producing a compiler capable of optimization and clever

code generation. This compiler, however, will not be as efficient as pos-

sible, since it was compiled with the skeleton compiler: this can be

resolved by having the slow-running, full compiler compile its own

source code, at which point the desired faster, full compiler will be

obtained.

cross-compilation is a quick way to produce compilers for new

machines.∗ A cross-compiler is a compiler that compiles across target

machines, for example a C compiler running on a SPARC machine

but generating code runnable by a PowerPC. By cross-compiling the

compiler itself, a compiler for the new machine is readily obtained.

This allows one to leverage all the work put into creating the compiler

for the original machine.

Clearly, a variety of solutions to this problem exist, but I hope the

central idea of bootstrapping has come through, that of using what
∗ Cross-compilers are also essential in embedded situations, where the target does not

have the resources to run a compiler and it is impossible to develop an application
for the machine using the machine itself.
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you have now to pull yourself up to where you would like to be.

The particular approach employed depends very much on the circum-

stances and on the preferences of the compiler writers.

4.6 bibliographic notes

Hopcroft, Motwani, and Ullman [55] is a standard textbook covering

languages and Turing machines and touching on computational com-

plexity. Its emphasis is on the abstract machines and the languages

themselves as opposed to scanning and parsing. The classic reference

for compiler design is Aho, Sethi, Ullman, and Lam [6], known af-

fectionately as “the dragon book” for its cover art. (The color of the

dragon is sometimes used to specify the edition.) Many more recent

texts still refer the reader to it for its detailed information on scan-

ning and parsing, which is dealt with more cursorily in more modern

texts to allow more discussion of optimization. However, the dragon

books, including the 2006 edition [6], preserve the original 1977 edi-

tion’s [5] presentation of LALR parsers as the ultimate LR parser. The

dragon books present LALR parsers as an improvement on LR parsers

because they avoid the exponential space–time problem of the original

LR algorithm. However, this problem had been addressed by Pager

[96] in 1973. Pager’s method was later illustrated and explained more

clearly and briefly, though less formally, in Spector [120]. It is unfortu-

nate that the dragon books appear not to take this not exactly recent

development into account.

A good, modern, introductory textbook on compiler design is Cooper

and Torczon [31]. Muchnick [93] picks up where a course using that

book would leave off by giving more advanced information on the

basic content and covering optimization and analysis in great detail.

As one implements more optimizations in a compiler, the problem of

optimization phase ordering, mentioned in 4.3 on page 73, grows in
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importance. One cannot escape the problem even by forgoing compil-

ers to code directly in assembly, as it affects even even hand-optimized

code [54]. Kulkarni, Hines, Whalley, Hiser, Davidson, and Jones [68]

describes an interesting attack on the problem by way of genetic algo-

rithms.

Textbooks on compilers often seem to give the impression that scan-

ning and parsing are solved problems and the world has moved on.

While that might be the case for scanning, parsing is still an active

area of research. The Purdue Compiler Collection Tool Set bucked the

trend of providing LR-style parser generators in favor of developing

an LL parser generator. This parser generator is now a project in itself,

ANTLR (ANother Tool for Language Recognition) [97]. Other areas of

research are implementing practical full LR parsers (see Menhir [114]

for an example) and GLR parsers (for example, Elkhound [85]), as well

as addressing problems of development of domain-specific languages

and composable grammars; see, for example, Wyk and Schwerdfeger

[137] and Bravenboer and Visser [23] and other work by those authors.

A more thorough and up to date reference than Aho et al. [6] for pars-

ing is Grune and Jacobs [48].

Another research direction in parsing theory is that of scannerless

parsers. We have presented the lexer and parser as distinct but inter-

acting modules of a compiler with their own theoretical bases. This

division is standard in compiler design: from a software engineering

perspective, it allows for the two to be tested and debugged indepen-

dently; from a theoretical perspective, it allows research into the twin

topics of regular and context-free languages to be utilized each to its

utmost. Merging the two into a single, scannerless parser brings ad-

vantages, but it also presents problems. These are described in Visser

[133]. A specific aspect of the solution to some of these problems is the

subject of van den Brand, Scheerder, Vinju, and Visser [132]. Braven-
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boer, Éric Tanter, and Visser [24] presents an example of a successful,

practical application of scannerless parsers.

Attribute grammars augment context-free grammars with attributes

and semantic rules in order to describe the program’s semantic mean-

ing. We developed attributed trees from parse trees; we next described

how semantic rules are used to perform attribute evaluation in the con-

text of an attributed tree; finally, we discussed the problems inherent in

this theoretical framework, such as the difficulty it has handling non-

local information such as that often stored in a symbol table in ad hoc

methods of semantic analysis. There’s more to be said about attribute

grammars than this, though, and their uses extend beyond compilers.

They can be put to good use in the generation of debuggers, syntax-

aware editors, and entire interactive development environments. They

are also useful in language design, while the semantics of the language

are still changing rapidly. A good survey of attribute grammars as

they are actually used is Paakki [95], which, in addition to explaining

attribute grammars and giving examples of their use, introduces a tax-

onomy classifying the various attribute grammar paradigms that have

developed.
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C O N C L U S I O N

This part provided background information essential to understanding

the remainder of this work.

• In Chapter 2, beginnings, we introduced the basic ideas of

lambda calculus and Turing machines. These provide the funda-

mental models of computation for the functional and imperative

paradigms, respectively. This connection will be made clearer in

the following parts.

• In Chapter 3, computers, we used Turing machines as a bridge

to modern computers. Succeeding sections described the three

major parts of a computer: processor, memory, and input-output.

Roughly, the processor is what lets a computer compute, mem-

ory provides storage, and input-output is what makes comput-

ers useful by allowing them to affect and interact with the world.

We stressed the variety of processor architectures while giving

some taste of that variety. We explained the existence of a mem-

ory hierarchy as well as the obstacle it presents to execution

speed. We gave a rough sketch of how input-output is imple-

mented in computers. We did not have much to say beyond this,

since many of the details of input-output are more pertinent to

programming languages themselves rather than their compilers.

• In Chapter 4, compilers, we surveyed compiler architecture

and design. We introduced the three-part structure of a com-

piler and discussed each part. Along the way, we sketched the

theory that lies at the basis of each part and how it is used in

practice. We also briefly surveyed intermediate representations
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and their importance to the compiler. Lastly, we broached the

chicken-and-egg issue of developing a compiler for a new pro-

gramming language, implementing a compiler in its own source

language, and similar compiler construction problems. The im-

portant point is that compilers neither develop in a vacuum nor

spring fully-formed from the pregnant void, but evolve gradu-

ally, though this evolution may involve the seemingly contradic-

tory device of the compiler effectively “pulling itself up by its

own bootstraps.”



Part II

I M P E R AT I V E L A N G U A G E S





6
O V E RV I E W

The family of imperative programming languages is large. It repre-

sents the most commonly employed programming paradigm, and it

is in light of it and its accomplishments that all other language fam-

ilies are judged. Before we begin to discuss functional languages, it

behooves us to examine their less exotic imperative cousins.

defining looks at what we mean by “imperative language,” discusses

how imperative languages have developed over time, highlights

central concepts of imperative programming, and mentions sev-

eral problems inherent in the paradigm.

compiling discusses issues particular to compiling imperative lan-

guages.

optimizing describes how optimization is performed and introduces

basic analyses and optimizations used with imperative programs.
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7
D E F I N I N G

7.1 history and concepts

We earlier said that Turing machines inspired the imperative paradigm.

What is paradigmatic about Turing machines? It is their sequential

operation and reliance on state in order to compute. A Turing machine

computes move by move, at each step writing to its tape, updating

its internal state, and shifting its read–write head a tape cell to the

left or right. Its behavior is time-determined: depending on how it has

modified its tape and the state it finds itself in after passing over the

cells along its computational trajectory, it makes one more move, move

after move, in sequence.

We then anchored our understanding of modern computers in Tur-

ing machines. These elaborate, complex machines grow out of this sim-

ple seed, but they have not left their roots. We find again a reliance on

state and sequence. The program counter advances cycle by cycle as

the contents of registers and memory change.

We mentioned assembly languages in passing then and described

their simple form, abbreviated mnemonics for machine instructions

and operands. The imperative language family grows out of these and

so inherits the Turing machine spirit. They have become more elab-

orate and complex over time, much as computers elaborated on the

fundamental concept of Turing machines.

The first imperative language was fortran , which is short for “the

IBM Mathematical Formula Translating System.” It was developed at

IBM in the 1950s as a language for scientific computing and pioneered
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compiler design and optimization, since no-one would trouble to make

the switch from writing hand-written, hand-optimized assembly code

to fortran unless it ran nearly as fast as such assembly code. The lan-

guage theory we introduced in the chapter on compilers had not yet

been developed, and ad hoc techniques were used instead. The prob-

lems encountered in inventing and applying these techniques spurred

the development

fortran was a child of its time. It relied on a fixed format for code

entry that was based on the punch cards used at the time. Each line

of eighty characters was broken into fields of different, fixed widths,

such as for numeric statement labels that were used in branching

instructions, for the “continuation character” that indicated that the

line it was on continued the previous line rather than beginning a

separate statement, and for the program code itself. All of its con-

trol flow statements (other than the sequencing implied by one line

of code following another) relied on the numeric labels. An exam-

ple, peculiar to fortran, is the arithmetic if statement. The

arithmetic if transferred control to one of three statement labels de-

pending on whether a provided arithmetic expression was less than,

equal to, or greater than zero: IF (〈expression〉) 〈statement label1〉,

〈statement label2〉, 〈statement label3〉.

fortran ii was the first fortran to support procedures. Proce-

dures allow algorithms to be specified in isolation from the rest of

the program and reused. Within the procedure body, formal pa-

rameters specified in the procedure’s declaration are manipulated

in place of the actual arguments that must be manipulated in the pro-

gram. The formal parameters are “dummy variables” like the x in the

mathematical function f(x) = x2 and exist to give a name within the

function’s body to all values substitutable for the formal parameter.

When the procedure is called from the program, actual arguments are

supplied; these are bound to the formal parameters by their position,
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so that the first argument is referred to by the first formal parameter,

the second argument by the second formal parameter, and so forth; the

computation specified by the procedure body is carried out; and, at the

end of the procedure, control returns to the caller and continues where

it left off. This is a powerful abstraction, and the style of programming

it gives rise to is sometimes called procedural programming.

fortran procedures used what is known as a call by refer-

ence evaluation strategy. An evaluation strategy describes the

way in which expressions are evaluated; the expressions that the vari-

ous names for evaluation strategies focus on are, conveniently enough,

functions. In call by reference evaluation, the arguments are bound to

the formal parameters in such a way that modifications to the formal

parameters affect the arguments’ values. Suppose we have defined a

function MAKE-SIX that expects a single parameter and simply sets that

parameter equal to 6. If the value of x is 5, and we call that function

with x as its argument, then, following the function call, x will have

the value 6.

fortran continues to be used and updated today. It remains a

language meant for scientific computing, but now, it is trailing the in-

novations of other imperative languages. One of these innovations is

structured programming, which does away with goto-based con-

trol flow in favor of structured control flow. The structure is

one based on higher-level control flow constructs like logical if state-

ments that execute their body depending on the truth value of the

provided expression, various looping constructs that repeat their body

in a predictable way, and function calls. Rather than having to deduce

that one of these common patterns is being used by deciphering the

various uses of labels, it is plain; rather than having to frame these

relatively intuitive forms of control flow in terms of statement labels

and jumps, one can express these patterns directly. This addressed the

problem of “spaghetti code” with convoluted, goto-based control flow
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that made it difficult to understand and predict the operation of a pro-

gram.

Another early imperative language family was algol , short for

algorithmic language. algol was the product of a joint effort between

European and American computer scientists to produce a common

language for specifying algorithms. Each version is named by its debut

year, starting with algol 58. The development of algol saw the

birth of backus normal form, abbreviated BNF and now read as

backus-naur form, a notation for specifying grammars that has

been slightly extended and used extensively since.

There were many official, numbered algol versions, and even more

extensions and variations developed in practice, and we will ambigu-

ously collapse them all into the single identifier algol. algol fea-

tured call by value, call by name, and call by reference

evaluation strategies. With call by value, the value of the argument is

provided as the value of the formal parameter, but modification of the

formal parameter affects only the parameter within the function body

and not the original argument. Call by name is similar to call by ref-

erence, except that each use of the parameter causes reevaluation of

the associated argument. If the argument is simply a value, this is no

different, but if it has side-effects, say, is a function that increments

some global counter, this will be carried out each time the value of the

parameter is used. This allowed for some confusing behavior, and call

by reference was preferred and enforced by later versions of algol.

A notable descendent of algol is the C programming language,

whose development began in the 70s with the unix operating sys-

tem and continues today. As its development alongside an operating

system might suggest, C was intended as a systems programming

language offering relatively detailed, low-level control of the com-

puter it is operating on. This is reflected in its use of unrestricted mem-

ory pointers which refer to addresses in the computer’s memory.
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As unix rose in prominence, so too did C. C is still widespread and

fairly widely used, and it functioned in some sense as a lingua franca of

computing, as the algol family did before it. C’s mark on the imper-

ative language family is most notable in its visual appearance, where

semicolons are used as statement separators and curly braces ({ and })

are used to delimit blocks in place of other textual indicators such as

BEGIN and END.

Following structured programming, the next development in the

imperative family was object-oriented programming. Object-

oriented programming introduces the concept of an object as a higher-

level unit of abstraction than the function. An object is a bundle of

state and methods (functions) that operate on that state. Objects are

instances of a class or type of object, by which we mean that the ob-

jects are structured as described by the class, though each might be in

a different state. Object-oriented programming entered the C family by

way of C++ and, later, Java, of which the latter has perhaps replaced

C as computing’s lingua franca. These languages also introduced pow-

erful module-like abstractions that allowed definitions to be grouped

at an even higher level into packages or namespaces. This helps to

avoid naming conflicts, which become more and more of a problem as

a program grows larger and larger and requires more and more vari-

able names, which prevents one body of code from interfering with

another and eases reuse.

Java is notable for providing garbage collection, sometimes

known as automatic memory management. This means that the

programmer is no longer responsible for indicating when some storage

referred to by a variable is no longer needed. Instead, the runtime

system attempts to discover when some storage is no longer reachable

or no longer needed and reclaims this by freeing up the space for use

with other variables. There is a cost associated to this at run time, since

the run time system must track this storage and reclaim it and lacks
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the knowledge of the program that the programmer has. This cost

prevented its widespread adoption prior to Java. But there is also a cost

to not providing garbage collection, since manual storage management

has proven to be a difficult and time-consuming issue that can cause

subtle problems in a program. The price is paid in development rather

than at run time.

Java is also notable as being designed to run on its own associated

platform, the Java virtual machine (vm), rather than in a specific

machine environment. This enables programs written in Java to run on

any platform for which a Java virtual machine has been implemented.

This too comes at a cost: the program is interpreted by the virtual ma-

chine which then uses the underlying machine to carry out the speci-

fied operation. This can be a slow process. Innovations in interpreter

design and compilers have done much to ameliorate this, but it is still

an issue.

Thus, imperative languages developed, in a sense, as abstractions

of assembly language. They continue to rely on sequencing and state

to perform computation and explicitly describe the process of com-

putation: do this, then do that, then. . . . Mathematical notation can be

used to specify formulas. Functions abstract common operations. Mod-

ules abstract over related definitions. Classes abstract over functions

(now called methods) and state and allow programs to better resem-

ble the real-life objects they are modeling. They frequently employ call

by value and call by reference evaluation strategies alongside proce-

dural and structured control abstractions. They are generally statically

scoped: the extent of a variable depends primarily on where it falls in

the textual description of a program. These scopes can, and do, nest,

both statically (if blocks within if blocks, say) and dynamically (a pro-

cedure call places one in a new scope).
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7.2 problems

The imperative paradigm has problems dealing with architectures that

do not reflect its heritage. Its reliance on statements that execute in se-

quential order, affect the associated program state, and use that state to

determine their sequencing has serious problems dealing with con-

current execution, in which several threads of execution can be

acting simultaneously and affecting each other in nontrivial, and some-

times problematic, ways. This same reliance also limits the ways in

which imperative code can be composed and reused. Modules, classes,

procedures, and scoping in general exists in part to address this prob-

lem by partitioning the namespace, so that one block of code’s variable

global_name can differ from another’s. As more and more lines of code

are added to a program, the interaction between various side effects on

the environment and state that are implicit in different functions and

statements compounds. To sum up the imperative paradigm’s prob-

lems in a single word, the problem is with scale: growing larger, in

programs, in number of executing threads and processors, in problem

complexity, poses a serious problem to a language family with such

humble, historical origins.

7.3 bibliographic notes

The proceedings of the Association for Computing Machinery’s few

History of Programming Languages (HOPL) conferences published

much valuable and fascinating material on the development of pro-

gramming languages. The strongly historically rooted description of

the imperative languages reflects my own views on the subject. Much

of the material on functional languages contrasts them with imperative

languages and discusses failings of imperative languages that appear

in contrast; the problems I mention spring from this sort of compari-
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son. If one compares the many branches of the imperative family, other

problems and tradeoffs come into view, but, while interesting in them-

selves, they are not relevant here. The appendices of Scott [117] feature

an interesting family tree of the imperative languages as well as many

capsule summaries of programming languages. The book itself is a

good starting point if the diversity of programming languages catches

your interest, though, as is usual, the bulk of its focus is on imperative

languages.
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C O M P I L I N G

The common overall approach to programming adopted by imperative

languages gives rise to common issues in their compilation. A few

such issues are scoping, data storage, and common data types such as

arrays.

8.1 static and dynamic links

Static scoping means that the variables of enclosing scopes must be

accessible from within their enclosed scopes. It also means that inner

scopes must be able to mask or shadow the variables of outer scopes,

creating a variable with an identical name in an inner scope that then

makes the same-named variable in the outer scope inaccessible from

that inner scope.∗

We mentioned the use of a symbol table as a form of intermediate

representation. But a single symbol table cannot cope with this nesting.

Instead, nested symbol tables are used. As each block is entered, a

new symbol table is created. On leaving, the symbol table is destroyed.

Listing 8.1: Scopes and shadowing

int x = 5;
std::cout << x; // prints 5
{ /* now in brace-delimited inner scope */

int x = 6; // this x masks the outer
std::cout << x; // prints 6

} /* back in outer scope: outer x no longer masked */
std::cout << x; // prints 5 �
∗ Some languages do provide a way to refer unambiguously to variables in enclosing

scopes, such as Tcl’s upvar and uplevel.
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This corresponds to the definitions of the inner scope going out of

scope.

The different blocks are connected in two ways: statically and dy-

namically. By statically, we mean lexically, in the textual representation

of the source code. By dynamically, we mean at runtime, in the sense

that the scope of a called function or other such block nests within that

of the caller, regardless of where the block is located statically. The

symbol tables are connected in two ways that reflect this distinction,

via a static link and a dynamic link. If a variable’s definition is

not found in the local symbol table, the static link is followed up and

that symbol table checked; this process is repeated till there is no en-

closing scope, at which point we must conclude the variable is simply

undefined. Similarly, when a function is called, its scope is dynami-

cally linked to that of its caller: at the end of the function, control will

return to the caller; exiting a function corresponds to returning along

the dynamic link.

Object-oriented programming introduces one more kind of link through

its class hierarchies. Class hierarchies allow subclasses to inherit the

definitions and so state and behavior of their ancestors. Often, this

is used to create multiple specializations of a more general class, as

might be used to treat the relationship between cars and boats with

the more general class of vehicle. The superclass link can be thought

of much like an extension of the static link to handle the class structure

of object oriented programs.

8.2 stacks , heaps , and static storage

Symbol tables hold symbols that allow us to access data. Where should

this data be placed? The way inner scopes nest within outer can be

seen as analogous to a piling up of definitions. Those on top mask

those below; when we leave a scope, we pop it off the stack to reveal
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the scope below. Data that comes and goes with a scope can then be

allocated on a stack. The behavior of functions and their data is similar,

as suggested by the use of the dynamic link. Data can be allocated as

part of the call stack; once we return to a lower level in the stack, that

is, once we return from the function, its local data is no longer needed.

Thus, local variables are stack-allocated.

Data whose extent is not related to these ideas, such as that stored in

space allocated by the programmer and freed either by the program-

mer or automatically during garbage collection, cannot be allocated

on the stack. Instead, it must be stored safely away till needed later

or till we know it is no longer needed. The region where such data is

allocated is known as the heap, and such data is said to be heap-

allocated.∗

Data that must persist throughout the program’s execution is called

static and is typically statically allocated. Such data is allo-

cated when the program is initialized and not freed till the program

terminates.

Stack-allocated data is handily managed implicitly by the call and

return sequence and nesting of scopes, while heap-allocated data can

be more troublesome. A typical layout in memory for the stack and

heap places their starting points at opposite ends of the space available,

so that they both have the most space possible. The total stack and heap

size is limited, but neither is arbitrarily limited beyond that, as both

grow towards each other from opposite ends of the memory space.

8.3 arrays

Arrays are the most common compound data type, so called be-

cause they are a data type, array, of some other data type, the base

∗ This heap has nothing to do with the heap data structure, which is often used to
implement priority queues.
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type. An example would be an array of integers, int[] array = {0, 1,

2, 3}.

With arrays, there are questions of central interest to the program-

mer, since they are matters of syntax and convenience. How are the

elements indexed? Is the first element number 1 or number 0? Can the

lower bound be changed? What information is available at runtime

about the array, for example, its size, lower bound, or base type?

Then, there are questions that face the compiler writer but are less

directly a language user’s concern. The most obvious of these is how to

lay out a multi-dimensional array in one-dimensional memory. There

are three popular approaches, each used by a major programming lan-

guage. Their names are biased to two-dimensional arrays, but the ideas

generalize to higher-dimensional arrays.

column-major order places elements in the same column in ad-

jacent memory locations. This order is used by fortran.

row-major order places elements in the same row in adjacent

memory locations. This order is used by C.

indirection vectors use pointers to one-dimensional arrays. This

is the approach adopted by Java.

The choice of column-major or row-major order influences which

is the best order to traverse an array: traversing a column-major ar-

ray by row requires jumping through memory, while traversing it by

column simply requires advancing steadily, bit by bit through mem-

ory. For higher dimensional arrays, row-major means the rightmost in-

dex varies fastest, while column-major means the leftmost index varies

fastest. Accessing an element is done by arithmetic, which is used to

calculate an offset from the base address of the array.

An example should clarify this. Suppose we represent something’s

address by prefixing an at-sign & to it. Say we want to access the ele-

ment a[3][5][7] of a 10× 10× 10 row-major array of integers where
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each dimension’s lower bound is 0. We calculate its address as an offset

from &a in terms of the size of an integer s as follows:

a. Find its offset from the start of the highest dimension. Here, that

is the third dimension, and we will call the offset o3. We want to

know the start of the eighth element, which is the length of seven

integers beyond the start of this dimension. Thus, o3 = 7 · s.

b. Find where that dimension begins in terms of the start of the

next lower. Here, that would be o2, and that would place us

past five runs of ten integers apiece, since each dimension is ten

integers long. Thus, o2 = 5 · 10 · s.

c. Repeat the previous step until we run out of lower dimensions.

Here, we need only repeat it once more, to find the offset to the

start of the second dimension. That is past three runs of ten runs

of ten integers apiece, thus, o1 = 3 · 10 · 10 · s.

d. Finally, sum all the offsets. This is the offset from the base ad-

dress. Added to the base address, it gives the address of the de-

sired element. Thus, our element is the s amount of data starting

at &a[3][5][7] = &a+ o1 + o2 + o3.

It is not hard to see how this computation can be simplified:

&a[3][5][7] = &a+ o1 + o2 + o3

= &a+ 3 · 10 · 10 · s+ 5 · 10 · s+ 7 · s

= &a+ s(7+ 10(5+ 10(3)))

The computation can also be generalized to handle nonzero lower

bounds and arrays of more dimensions.

Indirection vectors are similar, but different. Every n-dimensional

array with n greater than 1 is simply an array of addresses of arrays

representing the n− 1 dimension, except the final dimension, which is
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a 1-dimensional array of the base type. To access a[3][5][7] as we did

above, we would:

a. Find the address stored at index 3 of the array of addresses.

b. Dereference that address to access the next dimension. Repeat

the previous instruction with the index at that dimension, and

so on till we arrive at the last dimension, at which point we

proceed by simple one-dimensional array arithmetic to retrieve

the value.

If we represent dereferencing by a star *, then we can write this:

/* a is a multidimensional array’s name */

base = &a;

b = (*base)[3];

c = (*b)[5];

value = (*c) + 7 * sizeof(int);

// equivalently,

// value = (*(*((*base)[3])[5])) + 7 * sizeof(int); �
Indirection vectors replace the cost of array arithmetic with pointer

dereferencing. Rather than calculate a complicated offset, they acquire

the next needed address directly from a trivial, one-dimensional offset

of a known address.

8.4 bibliographic notes

For further information on these topics, almost any text on compilers

will do, though only more recent texts such as Cooper and Torczon

[31] will discuss issues germane to object-oriented languages.
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O P T I M I Z I N G

Our discussion of optimization in Section 4.3, Middle End: Optimizing

the IR focused on the variety of properties of a program one might

wish to optimize and gave examples such as speed, size, and power

consumption and the problem of optimization phase ordering. Now,

we will describe how one optimizes a program’s representation, along

with some examples of common optimizations applied to imperative

programs.

Optimization comprises two closely-related tasks: analysis, which

gathers the information needed for an optimization, and application of

the optimization. Each application of an optimization changes the rep-

resentation of the program, so a single analysis is likely to be repeated

several times. Optimizations and their analyses range from being quite

generally applicable to being quite specific to the language, even to

specific uses of the language. The source code might even be writ-

ten in order to ease optimization, possibly through annotations with

no meaning in the source language but helpful to the optimizer. Pro-

gram analysis and optimization is a fruitful area of research, with new

analyses and optimizations being developed constantly and older ones

refined. The details of implementation are specific to each compiler

and its chosen intermediate representations; as such, the intermediate

representation itself contributes in important ways to optimization. In-

deed, static single assignment form was developed, and is extensively

employed, to ease optimization.∗

∗ For more on ssa, see Section 4.2, Intermediate Representations.
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9.1 analysis

Analysis is integral to optimization. The variety of analyses are often

loosely classified based on their subject. Perhaps the broadest class

is data flow analysis. It can be distinguished from classes such

as alias analysis, which deals with attempting to discover which

names in the program refer to the same data (that is, are aliases for

the same data), control flow analysis, and dependence analysis.

9.1.1 Control Flow

Control flow analysis is necessary to perform almost all other anal-

yses. The aim of control flow analysis is to deduce the control flow

relationships between the elements of the intermediate representation.

In a linear IR, this makes explicit the sequential flow between adjacent

statements as well as that created by jump statements, goto statements,

and more structured control flow statements.

There are several approaches to control flow analysis varying in

their applicability, speed, and the type of information they provide.

Some methods can produce a relatively high-level structural analy-

sis of control flow that recognizes the type of control flow created by

the use of structured programming statements such as while, if-then,

if-then-else, and case. Others can do little more than recognize the

presence of some sort of loops as opposed to simple sequential control

flow.

Structural Units

It is necessary to understand the structure of the control flow graph in

order to understand the various scopes of analysis and optimization.

The fundamental element of a control flow graph, typically constitut-

ing the nodes of the graph, is the basic block (bb), a maximal se-
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quence of instructions that must be executed from start to finish. This

bars the possibility of either entering or exiting from the middle of a

basic block, so that, for example, labeled statements can only begin a

basic block. Procedure calls are a matter of some delicacy, and whether

they are treated as interrupting a basic block or not depends on the pur-

pose of the control flow analysis being performed. They might even be

treated in both ways. Delayed branches also introduce problems as to

how the instructions in the delay slots should be treated; fortunately,

this issue can largely be ignored except for very low-level representa-

tions on architectures that make such delays visible.

We say a basic block with more than one predecessor in the control

flow graph is a join point, since several flows of control come to-

gether in that block. A basic block with more than one successor is

similarly called a branch point. A single basic block can be both a

join point and a branch point.

A slightly larger structural unit is the extended basic block

(ebb). Extended basic blocks comprise a rooted control flow subgraph.

Its root is a join point. An EBB is the largest connected set of basic

blocks reachable from the join point that are not themselves join points.

Thus, if control reaches any of the blocks in the EBB, it must have gone

through the root.

The procedure itself forms the next largest generally recognizable

structural unit, though this is defined not in terms of the graph but

rather by the program itself. The largest unit is the entire program. In

between extended basic blocks and an entire procedure sit regions of

various sorts, defined as suitable for different analyses and optimiza-

tions.

Scopes of Analysis and Optimization

Corresponding to these structural units are the different scopes of anal-

ysis and optimization. These names are used to describe the subgraphs
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Figure 8: Structural unit examples
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of the control flow graph considered during a given analysis or opti-

mization.

local scope corresponds to a single basic block.

superlocal scope corresponds to a single extended basic block.

regional scope corresponds to a region not otherwise specified.

global scope (also called intraprocedural scope) corresponds

to an entire procedure.

whole-program scope is unambiguous; you might sometimes see

it called interprocedural scope as well, particularly in the

phrase “interprocedural analysis,” which describes a variety of

often rather intractable analyses.

“Global scope” might appear to be a misnomer for anything less than

the entire program, but it is generally preferred to “intraprocedural

analysis,” since that sounds altogether too much like ”interprocedural

analysis.” Global analysis encompasses a procedure’s entire control

flow graph; interprocedural analysis must cope with a number of con-

trol flow graphs, one for each procedure.∗

9.1.2 Data Flow

Data flow analysis, together with control flow analysis, is the bread

and butter of optimization. It can frequently be performed alongside

control flow analysis: both require similar techniques for building and

propagating information. Where control flow analysis concerns how

basic blocks are related, data flow analysis concerns how various kinds

of data are communicated along those relations.

∗ Attempts to introduce “universal” as a synonym for “interprocedural” as “global”
is used for “intraprocedural” were unsuccessful, but the contrast between the two
names might help to remember the distinction.
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Data flow analyses are posed as data flow problems. An example is

the reaching definitions problem: What definitions of a vari-

able could still be in force (live) at the point of a given use of that

variable? Similar is the problem of upward exposed variables:

Control flow graphs are generally drawn so control flows from top to

bottom, and this question asks, what variables must have been defined

upward of a given basic block?

These two problems typify two major classes of data flow problems,

the forward data flow problems, like reaching definitions, and

the backward data flow problems, like upward-exposed vari-

ables. These are so called because they require propagating informa-

tion either forward along the control flow graph’s edges or backwards.

A third, rarer, and more troublesome class is that of the bidirec-

tional data flow problems. This class is troublesome enough

that it is often either not bothered with or reformulated in terms of

the other two, as was the case for partial-redundance elimina-

tion, which seeks to discover computations of the same value that are

performed multiple times along certain paths through the control flow

graph.

Data flow analysis is well enough understood that it can be auto-

mated in good part by the appropriate tools. This understanding is

based theoretically upon lattices and flow functions. Lattices

are structured to correspond to the properties of the program under

analysis. Flow functions allow us to abstractly model the effect of parts

of the representation on those properties. Together, these let us ab-

stractly simulate the effects of executing the program and discover

intrinsic properties of the program, frequently independent of input

values and control flow. Data flow problems can be posed in terms

of these lattices and flow functions. Solutions to the problems become

the fixed points of properly formulated data flow equations, which

can be solved by iteration and, often, several other quicker and more
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clever methods. Solvability of such problems can be guaranteed for a

variety of flow functions.

An issue that is not dealt with directly by these abstractions is the

correctness of transformations based on these analyses. The analysis

must be performed with an eye towards the optimizing transforma-

tion that will be based on its results. We wish to be as aggressive as

possible in optimizing the program, but we cannot be so aggressive

that we do not preserve its behavior. In developing and implementing

optimizations, we walk a fine line between aggressiveness and conser-

vatism: if we are too conservative in drawing conclusions from our

analysis, we will fail to improve the program as much as possible; if

we are overly aggressive, we will be unfaithful to the original program,

and the results will be something related but different. This dilemma

has its parallel in translation: a word-for-word translation is stilted and

awkward, but without great care a more natural, fluid translation risks

departing from the meaning of the source text.

9.1.3 Dependence

Dependence analysis aims to discover computational dependences of

various sorts between the elements of the representation, often the in-

dividual statements in a low-level linear representation. It is central to

instruction scheduling and is discussed in detail in Section 4.4, Back

End: Generating Target Code.

9.1.4 Alias

Alias analysis is concerned with determining when and which differ-

ent names can refer to the same data. The way aliases can be created

and used varies greatly from language to language. Alias analysis is

often quite difficult. Making the most conservative assumptions possi-
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ble – namely that all data whose addresses have been made available

can be affected by any alias in the program – can guarantee correctness

at the expense of preventing possible optimizations. The cost of these

hyperconservative assumptions varies depending on the program. In

programs that do not make extensive use of aliases, this assumption

might not pose much of a problem. In programs that do use aliases ex-

tensively, the assumption could bar almost all optimization. Thus, alias

analysis is necessary to creating an aggressively optimizing compiler.

There are two parts to alias analysis: alias gathering, which dis-

covers which variables are aliases and basic information about what

data is aliased, and alias propagation, which propagates this in-

formation throughout the program and completes the analysis. The

propagation phase can be modeled as a data flow problem.

There are a few distinguishable types of alias information. may in-

formation describes what may happen but does not always happen.

This information must be accounted for and its effects allowed, but it

cannot be depended on to occur. must information is information

about what must happen. This information is very useful in perform-

ing optimizations. Alias information (and the analysis that produces it)

can also be flow sensitive and flow insensitive. The flow here

is control flow. Flow insensitive analysis is simpler and generally can

be performed as several local analyses that are then pieced together to

form the whole of the information. Flow sensitive analysis is more diffi-

cult, both computationally and conceptually, but also more detailed. It

requires understanding and, to some extent, simulating the program’s

control flow. The combinations of these factors – must, may, flow sensi-

tive, and flow insensitive – determine how long the analysis takes, the

usefulness of the information, and both the optimizations that can be

based on the information and the extent of those optimizations.
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9.2 optimization

9.2.1 Time

As discussed above, optimizations can be classified by their scope.

They can also be classified by when they are generally applied: early in

compilation, somewhere in the middle, or later. Time generally corre-

sponds to the level of abstraction of the program representation. Early

on, the representation is much closer to the source language than later,

when it generally becomes much closer to assembly language.

9.2.2 Examples

We will now give several examples of optimizations. We will name the

optimization, briefly describe it, and then give an example of some

source language code. We then demonstrate the results of the opti-

mization as transformed source code and provide a description of the

transformations performed.

common subexpression elimination There are several vari-

eties of common subexpression elimination depending on the scope

and approach. They all have the aim of avoiding redundant compu-

tation by reusing existing values. Common subexpression elimination

can be usefully applied both early and late in compilation.

Listings 9.1 and 9.2 provide a simple example of common subex-

pression elimination. The initial assignments of both i and j require

the computation of a * b. Common subexpression elimination will fac-

tor out this computation into a temporary value so that it need only be

computed once. Notice that common subexpression elimination tends

to increase register pressure, since the values of the common subex-

pressions must now be preserved beyond their first, immediate use.
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dead and useless code elimination This optimization is

easy to describe, though in practice it ends up being applied in a va-

riety of cases. It simplifies the representation, which speeds the fol-

lowing analyses and transformations. It is commonly run many times

during compilation. It aims to eliminate code that is useless, that

is, that computes a result no longer used, and code that is dead or

unreachable. Dead and useless code can be the result of textual sub-

stitution as done by the C preprocessor in expanding macros or the

result of other optimizations eliminating all uses of a definition or all

statements in a block.

The example in listings 9.3 and 9.4 on page 123 is a very artificial

example in C. Code portability is often achieved in C by writing suit-

able preprocessor macros that are then configured based on the envi-

ronment in which the code is compiled. Environment-dependent code

that cannot be dealt with abstractly through macros is included condi-

tional on other macros representing the platform. The preprocessor’s

conditional statements are normally used to selectively include code

for compilation by the compiler as opposed to the conditional state-

ments of the language. Here, we instead use the C language’s con-

ditional statements to include code. This results in dead and useless

code that would be removed by dead and useless code elimination, as

shown in the transformed code.

code hoisting Code hoisting is so called because it corresponds

visually to lifting a computation up in the control flow graph, which

is usually drawn so that control flows from top to bottom. Rather than

specifying that a computation occur in all branches of an extended

basic block, we might be able to hoist the computation up to the com-

mon ancestor of all those blocks so that it is specified only once. This

reduces code size. Code hoisting is a type of code motion.
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Listing 9.1: Common subexpression elimination: Source code

int i, j;
i = a * b + 3;
while (i < 10) {

i = i + 10;
}
j = a * b + i; �

Listing 9.2: Common subexpression elimination: Transformed code

int i, j, t1;
t1 = a * b;
i = t1 + 3;
while (i < 10) {

i = i + 10;
}
j = t1 + i; �

Listing 9.3: Dead and useless code elimination: Source code

#include " location .h"
#include " transport .h"
#include "platformConfig .h"
Transport deliveryMethod;
Location from = location_getHere();
Location to = location_getThere();
deliveryMethod = transport_nextDayAir;
/* Suppose platformConfig.h declares

* SUPPORTS_WORMHOLES true,

* SUPPORTS_FTL false. */
if (SUPPORTS_WORMHOLES) {

deliveryMethod = wormhole_open();
/* this renders the earlier definition of

* deliveryMethod useless */
} else if (SUPPORTS_FTL) {

/* this branch can never execute, so it is dead */
deliveryMethod = ftl_getShip();

} �
Listing 9.4: Dead and useless code elimination: Transformed code

#include " location .h"
#include " transport .h"
#include "platformConfig .h"
Transport deliveryMethod;
Location from = location_getHere();
Location to = location_getThere();
/* useless code eliminated */
deliveryMethod = wormhole_open();
/* dead code eliminated */ �
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Listings 9.5 and 9.6 provide a trivial example. As with other such

examples, it is likely the programmer would perform such a painfully

obvious optimization in the source code. Nevertheless, it is instructive.

The computation of x, which occurs in all branches of the switch. . .case

statement, is hoisted from the cases to before the switch. You can

see this hoisting visually in terms of the corresponding control flow

graphs in Fig. 9.

loop unswitching Here, switching refers to if-then-else control

flow or, more generally, switch. . .case control flow. When this occurs

within the loop, the switching occurs with each passage through the

loop. If the condition determining which case of the switch is executed

is loop invariant, then we can move the switch to surround the loop

and then duplicate the loop within each case. Then the switch is en-

countered only once, when we select which variety of the loop to use.

This trades code size against execution speed: there are fewer branches,

so the code will run faster, but the loop body must be repeated in each

case.

In listing 9.7, we find a loop with a nested if-then-else statement.

If we assume that warnlevel remains unchanged throughout the loop,

then we would, each time we go through the loop, have to test warnlevel

in order to select the same, still appropriate branch. Listing 9.8 shows

the results of applying loop unswitching to the code in listing 9.7. The

branch is now selected prior to looping, which eliminates many tests

and jumps.

Note how loop unswitching obscures the basic intent of the code,

namely, "tell everyone on the team a certain message depending on the

current warnlevel," and reduplicates the code governing control flow

(the for-loop header). If the programmer were to apply loop unswitch-

ing manually to the source code in this case, obscuring the code’s pur-

pose would harm its long-term maintainability, and reduplicating the
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Listing 9.5: Code hoisting: Source code

int x, y, j;
j = . . .;
switch (j) {

case 0: x = 42; y = 1; break;
case 1: x = 42; y = 2; break;
default: x = 42; y = 3; break;

} �

Listing 9.6: Code hoisting: Transformed code

int x, y, j;
j = . . .;
x = 42;
switch (j) {

case 0: y = 1; break;
case 1: y = 2; break;
default: y = 3; break;

} �

Figure 9: Code hoisting: Control flow graphs
(a) Source code
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control flow code introduces the opportunity of updating it in one

branch but failing to update it it in the other. Thus, it is inadvisable

for the programmer to manually perform this optimization. Since the

execution time saved by unswitching the loop could be significant, it

is important that the compiler perform this optimization.

9.3 bibliographic notes

While Cooper and Torczon [31, chapters 8–10] provides an introduc-

tion to analysis and optimization, Muchnick [93] concerns itself al-

most exclusively with analysis, optimization, and the construction of a

compiler that executes these. (This chapter is heavily indebted to both

books.) It leaves untouched matters of optimizations for parallel archi-

tectures and other such optimizations needed by demanding scientific

computing programs. For discussion of those issues, it recommends

Bannerjee [14, 15, 16], Wolfe [136] and Zima and Chapman [138].

The LLVM (Low-Level Virtual Machine) project [71] is notable among

other things for its extensive use of ssa form in its compiler architec-

ture. It uses ssa as its primary representation of the program through

most of compilation.

Static analysis is valuable for much more than compile-time opti-

mization. It is necessary for development of advanced IDEs (interac-

tive development environments), source code style-checking tools, and

bug-finding tools, among other things. Static analysis and its many

uses is an active topic of research that has led to several commercial

ventures, such as Klocwork,∗ Coverity,† and Fortify,‡ as well as open-

source research projects seeing industrial use such as Findbugs [56].

∗ http://www.klocwork.com/
† http://www.coverity.com/
‡ http://www.fortifysoftware.com/

http://www.klocwork.com/
http://www.coverity.com/
http://www.fortifysoftware.com/
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Listing 9.7: Loop unswitching: Source code

for (Person p = team.head; p->next != NULL; p = p->next) {
if (warnlevel >= 2000) {

p.klaxon << "Warning! ";
} else {

p.spywatch << "All clear . ";
}

} �

Listing 9.8: Loop unswitching: Transformed code

if (warnlevel >= 2000) {
for (Person p = team.head; p->next != NULL; p = p->next) {

p.klaxon << "Warning! ";
}

} else {
for (Person p = team.head; p->next != NULL; p = p->next) {

p.spywatch << "All clear . ";
}

} �
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C O N C L U S I O N

Imperative languages developed to replace assembly languages for

general programming purposes. They have dominated the program-

ming language landscape, and their long history and wide use have

made them the target of much research. They provide the conventional

backdrop against which other programming language families, such

as the functional languages discussed next, play their part. Unconven-

tional ideas are often explained in terms of concepts familiar from the

imperative paradigm. Alternative paradigms are judged in light of the

successes and failures of the imperative. Thus, in addition to technical

background, this part serves to communicate something of a common

cultural background, as well.

• In Chapter 7, defining, we quickly surveyed the development

of the imperative programming paradigm through the growth of

the imperative language family, focusing on fortran, algol,

C, and Java as examples of goto-based, procedural, structured,

and object-oriented programming. We concluded by giving sev-

eral drawbacks of the imperative paradigm.

• In Chapter 8, compiling, we introduced common issues en-

countered in developing a compiler for imperative programming

languages, in particular:

– scope

– data storage

– array layout.

129
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• In Chapter 9, optimizing, we described the process of opti-

mization in terms of a variety of analyses and transformations

and gave examples of several common optimizations applied to

imperative programs.
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O V E RV I E W

We have discussed imperative languages at some length. Now, we

move on to functional languages.

theory discusses some theory basic to functional programming.

history sketches the history of the functional language family by

way of several of its defining languages.

compiling describes in broad terms how functional languages are

compiled.

case study : the glasgow haskell compiler addresses the ques-

tion of how programs in modern functional languages are actu-

ally compiled to run on modern computers. We answer this by

studying the Glasgow Haskell compiler, the principal compiler

for the Haskell language.
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T H E O RY

12.1 types

When we mentioned types earlier, we took for granted that the mean-

ing was clear enough based on shared experience of types in common

programming languages. Now, we wish to discuss the functional lan-

guages. Here, we cannot rely on shared experience. Functional lan-

guages have seen some use as testbeds for practical applications of de-

velopments in type theory. Modern functional languages are founded

not only on the lambda calculus, but on typed lambda calculi. But the

lambda calculus is a poor way to introduce the terminology and con-

cepts of types, and so we shall first discuss types in order to develop an

intuitive understanding of some concepts that we will later introduce

into the lambda calculus. Before we go on to discuss the languages

themselves, then, we would do well to look a bit more carefully at the

concept of type.

Types are introduced into programming languages in order to make

the language safer and easier to compile efficiently. Types make the

language safer by making it much easier for the compiler to catch non-

sensical operations, such as trying to add a string to a pointer and

store the result in a structure. If a language can guarantee that opera-

tions of one type will not be applied to operands of an incompatible

type, then we say the language is type safe. In a type safe language,

a type inconsistency becomes a critical error. Consequently, programs,

especially large, complex programs, written in type-safe languages are

easier to debug than those written in non–type-safe languages. Types

135
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can also make the language easer to compile efficiently. Different types

of data can, or sometimes must, be dealt with in different ways at the

machine level. Types increase the amount of knowledge about the el-

ements of the program available to the compiler for optimization and

allow the resulting code to be specialized to the types involved.

Providing type information, however, can be burdensome on the pro-

grammer. It is desirable that the programmer need not explicitly spec-

ify the types involved in the program, but rather that the types be im-

plicit in the values used and behaviors specified. This is done through

type inference. Once all types have been inferred, type checking

can proceed; once the program successfully passes type checking, the

type information can be used in optimization and code generation.

Now that we have clarified how types are used and why they matter,

it is time to be clearer about what types are. Quite simply, we can look

at a type as an identified set of values. These sets can overlap or be

disjoint. The integer 6 falls into both the integer subranges 1..10 and

5..15. But the set of all integers and the set of all strings is distinct;

even the integer 5 and the string “5” containing the character 5 can

be made readily distinguishable by introducing the lexical convention

of writing strings within quotation marks. Sets can also be related by

inclusion. All integers and reals are also numbers at the same time.

From this, we can see that a given value can belong to a set of types. To

express that a given value is of a given type, we write 〈value〉 : 〈Type〉.

We can also construct types from other types. With→, we can build

the type of functions from one type to another from the types of its do-

main and codomain. The integer successor function succ, defined such

that succ x : Int = x+ 1, that is, it takes an integer as input and out-

puts that integer incremented by 1, would then have type Int → Int.

product types are tuples with the various components of the tuple

capable of taking on values of various types. To represent a specific

tuple, we write its elements as a comma-separated list within paren-
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theses. For example, (1, ’A’) is a specific tuple to which we could

assign the type Int× Char. If we allow the components of the tuple to

be referenced by name rather than ordinal position, we find that we

have reinvented structures (in the terminology of C) or records (in the

terminology of Pascal).

The type system of a language is often specified in this way, by

enumerating the base types and then describing how those types

can be combined to form other types. In this way, the type system

itself represents a small language of types with its own syntactic and

lexical rules and its own semantic content embedded within the larger

context of the programming language itself.

12.1.1 Polymorphism

Parametric and Ad Hoc

polymorphism is the property of being of many types. It stands op-

posed to monomorphism, the property of being of a single type.

Both concepts are broadly applicable to the typed elements of pro-

gramming languages – variables, functions, operators, sometimes even

modules – and, by extension, to programming languages themselves:

a polymorphic language exhibits polymorphism wherever possible,

an almost polymorphic language has fewer polymorphic features, a

nearly monomorphic language has virtually none, and a monomor-

phic language has purely monomorphic features.

Traditionally, polymorphism is informally divided into two kinds

based on the polymorphism exhibited by a function: parametric

polymorphism, where the function behaves uniformly across all types,

and ad hoc polymorphism, where the behavior of the function is

specified separately for different types.

In parametric polymorphism, the parametric type of the function is

best expressed by introducing a type variable. For example, if we



138 theory

use the notation [〈type〉] to represent a list of the given type, then a

generic length function parameterized on the type of the list would

have type ∀α.[α]→ Int.∗ This expresses that length has type “function

from list of type α to Int for all types α (∀α).” It is possible to define

such a function because of the common structure of all types of lists.

This is not unusual: parametric polymorphism is frequently achieved

by exploiting some common property of the types involved.

Ad hoc polymorphism, on the other hand, requires separate defi-

nitions for all types involved. The addition operator + is frequently

ad hoc polymorphic. When given two integers, it returns an integer;

when given two real numbers, it returns a real number; in some lan-

guages, when given two strings, it returns their concatenation, so that

"to" + "day" returns "today". It is the nature of ad hoc polymorphism

that the function will not be defined for all possible types and will

not be uniformly defined even for those types to which it can be ap-

plied, as in the dual uses of + for both numerical addition and string

concatenation.

It is, in fact, possible to regard ad hoc polymorphism as monomor-

phism together with the overloading of function names. From this

point of view, + is not a single function applicable to two values both

either integers, reals, or strings, but is in fact three different monomor-

phic functions that share a single name. By examining the types of the

supplied arguments, the overloading can be resolved, so that, for ex-

ample, 1 + 2 can be turned into a call to addInt and 1.0 + 2.0 to a call

to addReal, while "to" + "day" can be turned into a call of concatString.

Matters become more confused when we introduce coercion, the

implicit forcing of a value from one type into another. This is common

with numeric arguments: if a function of type Real → Real is applied

to an Int, the Int value might be coerced to a value of type Real, so

that floor 4 becomes floor (toReal 4), as if the programmer had writ-
∗ In fact, we can view the square bracket notation [T] for a list of type T as a syntactic

convenience for expressing the application of the parametric type constructor Listα
to the type T.
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Table 1: Ad hoc polymorphism as overloading

overloaded call resolved to

1 + 2 addInt 1 2

1.0 + 2.0 addReal 1 2

"to" + "day" concatString "to" "day"

ten floor 4.0. With coercion and overloading in force, what happens

when 1 + 2.0 is encountered? Would it be as if the programmer had

instead written addIntReal 1 2.0, an addition function expecting an

integer and a real as its two inputs, or would the integer be coerced

so that addReal could be used? Does addInt even exist, or are integers

always coerced to be of type Real before invoking addReal?∗

Subtype

subtype polymorphism is a restricted kind of parametric polymor-

phism in which the universal quantification of the type variable is re-

stricted to the universe of those types that are subtypes of some other

type. For example, a parametrically polymorphic function for sorting

lists relies on the fact that the type of the lists is ordered in some way.

Thus, what is desired is to express that sort is a function from lists of

some ordered type to lists of the same ordered type, which is to say

that it is a function from lists of all types where the type is ordered

to lists of the same type. If we introduce Order as the type of all or-

dered types and write A ⊆ B to express that A is a subtype of B, then

we can assign sort the type ∀α ⊆ Order.[α] → [α]. This combination

of universal quantification and subtyping is referred to as bounded

universal quantification.

∗ We owe this example to Cardelli and Wegner [29, p. 476].
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12.2 lambda calculus

In Chapter 2, beginnings, we briefly sketched the lambda calculus.

Now, we shall take the time to do it justice. The fundamentals of the

lambda calculus are simple, unassuming, and somewhat unintuitive.

By extending the lambda calculus, we can make it more “natural” for

reasoning about and even doing programming, but this comes at the

cost of reducing its power. It is, however, partly this reduction in power

that makes these extensions so appealing.

The rest of this chapter assumes you are familiar with the first-order

predicate calculus, in particular the treatment of quantifiers and free

and bound variables. If you are not, some of the finer details of the

presentation will elude you, but you should still come away with an

intuitive understanding of many of the concepts of this chapter.

12.2.1 Pure Untyped Lambda Calculus

Pure untyped lambda calculus is the original form of the lambda calcu-

lus. When someone speaks of “the lambda calculus” without qualifica-

tion, this is what is meant. Its purity is due to its conceptual simplicity

and elegance. We call it untyped because it makes no distinction be-

tween types: everything is of the same type.

The building blocks of the lambda calculus are lambda terms.

We will call the set of all lambda terms Λ. Λ is readily defined using a

context-free grammar:

Λ→ V | P | B

V → v | V ′

P → (Λ Λ)

B→ (λV Λ)
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Let us go through this, line by line, to ensure we understand it. The

first production

Λ→ V | P | B

says that we build terms in Λ using three different rules, V , P, and B.

If we peek ahead at the productions for P and B, we can see that these

depend on Λ. Thus, the first rule, V , is critical. It generates the most

basic lambda terms: variables. The essential properties of variables

are:

a. They have no substructure: they are atomic .

b. Each variable is distinguishable from each other.

The first property is plain from the definition. The second property

becomes clear once we write out the terms that V produces. These are

none other than the infinite set {v, v′, v′′, . . .}, namely, an infinite set of

variables, each built from the same basic symbol (v) by the addition of

more and more primes (′).

Now that we have some terms in Λ, we are free to describe how

to form new lambda terms from other lambda terms. That is what

the next two rules do. Each describes one way to generate, given two

lambda terms, one more lambda term.

The first way is to juxtapose two terms and enclose the result in

parentheses. This is described in the context free grammar as

P → (Λ Λ)

and is known as application. If M and N are lambda terms, then

an application of M to N looks like (MN).
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The second way is to follow a λ with a variable and another term

and enclose the whole in parentheses. The grammatical production

corresponding to this is

B→ (λV Λ)

and is known as abstraction. If M is a term, then (λv M) is an ex-

ample of an abstraction. We shall call the variable v in such a term the

variable of abstraction and the term M the abstractionbody.

We will sometimes adopt the point of view of constructing this term

fromM and v. In that case, we say that we are “abstracting the variable

v over the term M.”

As it stands, the readability of this notation degrades rapidly as

lambda terms become more complex. The number of parentheses grows

rapidly, and it becomes difficult to tell which variables are identical

and which different as the number of primes in use grows. Thus, we

introduce some conventions:

• Lowercase letters (x, y, z, and so forth) represent atomic vari-

ables.

• Capital letters (M, N, and the like) represent arbitrary lambda

terms.

• Application is considered to associate to the left. This allows us

to omit the parentheses introduced by abstraction except when

we must override this rule for a specific term. Thus, MNOP

should be read as (((MN) O) P).

• Abstraction is considered to associate to the right. This allows

us to omit many of the parentheses introduced by abstraction.

Thus, λx λy λz M should be read as (λx (λy (λz M))).

• The variable of abstraction will be separated from the abstraction

body by a dot, so that we write λx.M instead of λx M.
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Table 2: Notational conventions

type of term becomes originally

Variables x, y, z, . . . v, v′, v′′, . . .
Terms M, N, . . . M, N, . . . ∈ Λ

Application MNOP (((MN) O) P)

Abstraction λx.λy.λz.M (λv (λv′ (λv′′ M))) where M ∈ Λ

These conventions are summarized in Table 2 on p. 143

We shall write M ≡ N to state that M and N are syntactically equiv-

alent. Intuitively, when we say that they are syntactically equivalent,

we mean that they were “built” the same way and, though they might

use different variable names, they can be considered to be the “same

term in a different guise.” For example, thanks to the infinity of basic

variables, we can readily construct an infinity of syntactically equiva-

lent lambda terms by picking a variable, picking another variable and

applying the first to the second, then abstracting over the second:

1. Pick a variable.

x ≡ y ≡ z ≡ . . .

2. Pick another.

y ≡ z ≡ w ≡ . . .

3. Apply the first to the second.

xy ≡ yz ≡ zw ≡ . . .

4. Abstract over the second.

λy.xy ≡ λz.yz ≡ λw.zw ≡ . . .
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At each step, all the terms listed are syntactically equivalent. We claim

that this is justified because all these terms behave the same way, as

we shall see quite soon. This makes the notion of syntactic equivalence

a powerful and useful one. But this concept is more sophisticated than

it might at first sound, and there are some pitfalls to watch out for in

defining and using it, which we shall come to shortly.

There is one more ingredient of the pure untyped lambda calculus.

So far, we have established a static universe of lambda terms. We can

conceive of larger and larger terms, but we cannot simplify them or do

anything beyond list them. The missing spark that puts these terms in

motion and enables computation is called β-reduction. β-reduction

resembles the application of grammatical productions in context-free

grammars, and the notation is similar, though both the behavior and

notation are slightly and significantly different.

We begin by defining single-step β-reduction, written →β .

This relates lambda terms to lambda terms; specifically, it says that we

can replace the application of an abstraction term to another term with

the term formed from the abstraction body by substituting the other

term for the variable of abstraction wherever it occurs in the body:

(λx .M)N →β M [x := N]

We can also describe how β-reduction behaves with other sorts of

terms:

• β-reduction is allowed in either half of an application.

M →β M′

MN →β M′N
M →β M′

NM →β NM′

• β-reduction is allowed within an abstraction.

M →β M′

λx .M →β λx .M′
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The notation 〈upper statements〉
〈lower statements〉 means that, if we know the upper state-

ments to be true, then the lower statements must also be true. The

horizontal line between the two levels can be read “implies.”

We can similarly define many-step β-reduction, �β : M �β

N, where N is not necessarily distinct from M, if there is some chain

of zero or more β-reductions beginning with M and terminating with

N, that is, M →β M′ →β · · · →β N.∗ Unlike single-step β-reduction,

which only relates different terms, many-step β-reduction also relates

a term to itself: M�β M always.

β-Reduction and the Perils of Names

What is going on here? We can think of it this way: abstraction binds

its variable. Once we have abstracted a term over a given variable, we

cannot do so again. The variable is no longer free. When we apply an

abstracted term to another term, β-reduction simultaneously performs

the binding of the variable to the other term and substitutes that term

for the bound variable throughout the abstraction body. Now that its

purpose has been fulfilled and the abstraction made concrete, the ab-

straction disappears. An example will make this clearer. Take λy.xy.

Applying it to some lambda term, M, and β-reducing it gives:

(λy.xy)M→β xy [y := M] = xM

But here there be dragons. This is where the convenient identifica-

tion of syntactically equivalent terms returns with a vengeance. Sup-

pose we take the doubly-abstracted term λx.λy.xy and apply it to the

∗ Note that we are using a two-headed arrow � here instead of the starred arrow
∗

=⇒ that we used for the similar concept of derivation in multiple steps with context-
free grammars. As with derivation, where a subscript lm or rm indicated whether
leftmost or rightmost derivation was used, a subscript β here indicates that β-reduc-
tion was employed.
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seemingly innocent term wyz. Let us also apply it to the syntactically

equivalent term tuv. What happens?

(λx.λy.xy)(wyz)→β λy.xy [x := wyz] = λy.wyzy

(λx.λy.xy)(tuv)→β λy.xy [x := tuv] = λy.tuvy

But, should we apply this to yet another term, say s, something unex-

pected occurs:

(λy.wyzy)s→β wyzy [y := s] = wszs

(λy.tuvy)s→β tuvy [y := s] = tuvs

The results are obviously no longer syntactically equivalent!

This problem should be familiar to anyone acquainted with the first-

order predicate calculus. The abstraction symbol λ in the lambda cal-

culus behaves exactly the same as do the quantifiers ∃ and ∀ in that

both bind their associated variable in the body of the term that we say

is abstracted over in the lambda calculus and quantified in the first-

order predicate calculus. The problem is one of variable capture:

we substituted wyz, which has as its free variables {w,y, z}, into a term

in which y was bound, thus incidentally binding the y of wyz. When

we substituted the syntactically equivalent tuv, however, all three vari-

ables remained free in the result. Thus, naïve β-reduction does not

necessarily preserve syntactic equivalence, contrary to our intent in es-

tablishing that equivalence. The only way to ensure that syntactically

equivalent terms produce equivalent results is to be very careful to

avoid variable capture. This is more difficult to fully specify than it

sounds, and we refer you to any text on the first-order predicate calcu-

lus for the details. For the purposes of this example, it suffices that we

always rename bound variables to some variable that does not occur

free in the term about to be substituted. Here, that would mean renam-

ing the bound variable y to some variable other than those of wyz, say
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v. If we perform this renaming and then repeat our experiment, we get

the appropriate results:

(λx.λy.xy)(wyz) ≡ (λx.λv.xv)(wyz) (renaming y to v)

(λx.λv.xv)(wyz)→β λv.xv [x := wyz] = λv.wyzv (first application)

(λv.wyzv)s→β wyzv [v := s] = wyzs (second application)

wyzs ≡ tuvs (the results)

As you can see, the result is now syntactically equivalent to that reached

when we use tuv instead of wyz.

α-Reduction

There are two ways around the variable capture problem. One is to

simply assume that all this renaming takes place automatically and

get on with the theory. This is very convenient if all you are inter-

ested in is developing the theory associated with the lambda calculus

and is a favorite choice of theoreticians. The other option is to formal-

ize this renaming process by introducing another type of reduction,

α-reduction, and modify the rules surrounding β-reduction to ex-

plicitly forbid its use where variable capture would occur, thus forcing

the invocation of α-reduction before β-reduction can continue. This is

somewhat messier, but it better reflects what must occur in a practical

implementation of the lambda calculus. While waving our hands and

saying that we identify syntactically equivalent terms and all renaming

occurs as necessary for things to come out as desired in the end works

fine on paper and fine with humans, we must be a bit more explicit if

we are to successfully implement β-reduction in a compiler.

Doing so gets even messier. We must continually come up with

unique names, make repeated textual substitutions, and keep check-

ing to ensure we’re not about to capture a variable. But this mess was

foisted upon us by our choice of variables. We have already made clear
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by our treatment of these variables that their names serve as nothing

more than placeholders. They are just ways for the abstraction to point

down into the term and indicate at which points we should make the

substitutions called for by β-reduction. What if, instead, we reversed

the relationship between the abstraction and its variable?

De Bruijn Indices

The central insight of de bruijn indices is to eliminate the use of

corresponding variable names in the abstraction in favor of numbers

“pointing” to the appropriate lambda. Free variables are considered

to point to lambdas that have yet to be introduced. Thus, instead

of writing λx.xy, we would write λ.12, since the x in the former no-

tation is bound by the first enclosing λ, and 2 is the first number

greater than the number of enclosing lambdas. The more complex term

λx.(λy.xy)(λz.λy.xyz) would become λ.(λ.21)(λ.λ.321).

This demonstrates that we are not simply renaming variables-as-let-

ters to variables-as-numbers. Instead, we are using two closely-related

notions to assign the numbers: the level and depth of a given variable

occurrence. To determine a variable occurrence’s level, we think of

starting from the outside of the expression, at level 1, and descending

through it to the occurrence. Each time we enter the scope of another

lambda along the way, we drop down another level in the term, from

level 1 to level 2 and so on. We ultimately replace the bound variable

with its depth. The depth is how many levels above the current level

of nesting the corresponding binding λ is located. If the occurrence and

its binder are at the same level, we consider the occurrence’s depth to

be 1. Each level we must ascend from the variable after that to reach

the binder adds one to the depth. We conceive of the free variables

as sitting one above the other over the outermost lambda of the term,

so that we must ascend past the top level in counting out their depth.
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We can thus readily identify free variables, since their depth is greater

than their level.

Take the xs in the last example, which became respectively 2 and 3.

Let us visually display the level of an term by dropping down a line on

the page; then the conversion between variable names and de Bruijn

indices becomes easier to see:

Table 3: Converting to de Bruijn indices

level variable names de bruijn indices

1 λx. λ.
2 (λy.xy) (λz. (λ.21) (λ.
3 λy.xyz) λ.321)

This conversion can be performed algorithmically by keeping track

of which variable names were bound at which level of nesting. We can

also readily convert from de Bruijn indices back to variable names. This

allows for the entry and display of lambda terms using variable names

while reduction proceeds in terms of de Bruijn indices. Since de Bruijn

indices give a unique representation for each syntactically equivalent

lambda term, they sidestep the problems with variable binding and

the like that we encountered earlier.∗

Currying

But variable names are more convenient for humans both to write and

read,† and so we return to using the more conventional notation. We

can even do a bit more to increase the readability of our lambda terms.

∗ You might have noticed that, since the indices do depend on the level of nesting,
they must be adjusted when substitution occurs under abstraction. But this is only
a slight problem compared to the mess brought on by names, and it can be readily
and efficiently dealt with.
† De Bruijn suffered no confusion on this count: he intended his namefree notation

to be “easy to handle in a metalingual discussion” and “easy for the computer and
for the computer programmer” and expressly not for humans to read and write [38,
pp. 381–82].
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We have already eliminated excess parentheses: let us now eliminate

excess lambdas.

Consider the lambda term λx.(λy.(xy)). According to our conven-

tions, abstraction associates to the right, and so this can be unambigu-

ously written as λx.λy.xy. But, look again: the distinction between the

variable bound by abstraction and the term within which it is bound is

clear, since each abstracted term has the form λ〈variable〉.〈term〉. When

we come across nested abstraction, as above, it is clear that those vari-

ables closer to the nested term but left of a dot are the result of abstrac-

tion at a deeper level of nesting. So let us write, instead of λx.λy.xy,

rather λxy.xy. This applies wherever we would not require that paren-

theses intervene between nested lambdas due to convention. Thus, we

could rewrite λx.(λy.xy)(λz.λy.xyz) as λx.(λy.xy)(λzy.xyz).

Notice now how a lambda term such as λxy.xy resembles a function

of multiple arguments. If we apply it to two terms in succession, then

it eventually β-reduces precisely as if we had supplied two arguments

to a binary function: (λxy.xy)MN �β MN. But, what happens if we

apply it to a single term? Well, (λxy.xy)M →β λy.My, that is, we get

back a term abstracted over y. It is as if, on supplying only one argu-

ment to an n-ary function, we got back a function of arity n− 1. When

we apply this term to, say, N, we arrive at MN yet again, precisely as if

we had immediately supplied both “arguments” to the original term.

This is not mere coincidence. We can, in fact, represent all n-ary

functions as compositions of n unary functions. Each such function

simply returns a function expecting the next argument of the original,

n-ary function. This form of an n-ary function is known as its cur-

ried form, and the process of transforming an uncurried function into

a curried function is called currying.∗

∗ The name is a reference to the logician Haskell B. Curry, though the idea appears to
be due to Moses Schönfinkel.
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From Reduction to Conversion

Let us now step back a ways to where we had just defined β-reduc-

tion. β-reduction is a one-way process: it can never make a term more

complicated than it was before, though we cannot go all the way to

claiming that β-reduction always results in a less complicated term.

For example, (λx.xx)(λx.xx) always and only β-reduces to itself and

thus becomes neither more nor less complicated: (λx.xx)(λx.xx) →β

λx.xx [x := xx] = (λx.xx)(λx.xx)→β · · · .

But β-reduction does relate terms: one term is related to another if it

can eventually β-reduce to that term. In some sense, all terms that are

the result of β-reduction of some other term are related in that very

way. We thus name this relation by saying that such terms are β-con-

vertible, so that if M �β N, or N �β M, or L �β M and L �β N,

or M �β P and N �β P, then M and N (and additionally L and P, if

such is the case) are β-convertible.∗ This is illustrated in Fig. 10, p. 152.

We notate this relation with a subscripted equals sign: M =β N. Note

that, as a consequence of the definition of β-convertibility, M =β M

for all lambda terms M.

(Now that we have introduced β-conversion, it is time to emend our

earlier comments on α-reduction. What we have called α-reduction

is more commonly, and more properly, called α-conversion, since the

relation between names is inherently bidirectional: x converts to y as

readily as y converts to x.)

the church–rosser theorem An important property of the

lambda calculus is related to this. It is known as the church–rosser

theorem, and it says that the lambda calculus together with→β has

two properties.

∗ To be more exact, β-conversion is the equivalence relation generated by many-step
β-reduction.
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Figure 10: β-conversion
Letters represent lambda terms. A directed arrow M → N means
that M β-reduces to N in some number of steps, that is, M�β N.
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• Firstly, it says that if any lambda term can be reduced in one

or more steps to two different lambda terms, then it is possible

to reduce each of those lambda terms in some number of steps

to the same term. More symbolically, this can be put as follows:

if M �β M1 and M �β M2, then there exists an M3 such

that M1 �β M3 and M2 �β M3. What this means graphi-

cally is that, given the figure from the second row of the table in

Fig. 10 (p. 152), we can infer the existence of the term P in the

the last row of that table.

• Secondly, it states that if two terms M and N are β-converti-

ble into each other, then there is some other common term P

to which the first two can both be reduced. This is to say that,

if M =β N, then we can find some P such that M �β P and

N�β P as well.

The first of these properties is known as the church–rosser prop-

erty. The second property does not have a name of its own. Since the

Church–Rosser theorem is so important, we will sketch a proof that it

holds for the pure untyped lambda calculus. We defer a discussion of

the theorem’s implications for the lambda calculus till after we have

introduced the idea of a normal form.

There are numerous proofs of the Church–Rosser theorem. The one

sketched here is due to Tait and Martin–Löf by way of Barendregt.∗

After proving a set of lemmas, the Church–Rosser theorem becomes a

simple corollary.

We begin by defining the diamond property. A binary relation�

on lambda terms satisfies the diamond property if for all lambda

terms M, M1, and M2, such that M � M1 and M � M2, there

also exists a term M3 such that both M1 � M3 and M2 � M3. In

a reduction diagram, the term M3 appears to complete the diamond

∗ See Barendregt [17, §3.2].
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Figure 11: The diamond property
The binary relation� satisfies the diamond property if, for every
three terms M, M1, and M2 such that M � M1 and M � M2,
there exists some fourth term M3 such that M1 � M3 and
M2 � M3. In this diagram, solid arrows indicate assumed rela-
tions, while dashed arrows indicate inferred relations.
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begun by M � M1 and M � M2; this is illustrated by Fig. 11 on

page 154.

From this definition, it is clear that, if we can prove that�β satisfies

the diamond property, then we have proved that �β has the Church–

Rosser property. The first lemma shows that, if a binary relation� on

a set (such as β-reduction →β is on the set of lambda terms) satisfies

the diamond property, then so too does its transitive closure�∗. This

is suggested by the diagram of Fig. 12 on page 155.

This lemma is not quite what we need. Single-step β-reduction →β

is not reflexive, but many-step β-reduction is. Many-step β-reduction�β

is in fact the reflexive transitive closure of→β. The solution to this mis-

match is to define a reflexive binary relation on lambda terms similar

to→β such that many-step β-reduction is this new relation’s transitive

closure. Once we prove that this new relation has the diamond prop-

erty, we have proven that its transitive closure �β has the Church–

Rosser property.

Once we have that many-step β-reduction�β satisfies the diamond

property, it becomes simple to prove that β-convertible terms can be β-

reduced to a common term (the second property specified ): The result

follows readily from the definition of =β.
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Figure 12: Transitive diamonds
No matter how many � steps �∗ might put M1 and M2 away
from M, repeated application of the diamond property of � lets
us show that its transitive closure �∗ also satisfies the diamond
property: there is always some M3 such that both M1�∗ M3 and
M2�∗ M3.
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Normal Forms

Now that we have defined lambda terms and β-reduction, we can give

a normal form for lambda terms. This is important if we are to explain

the impact of the Church–Rosser theorem. A lambda term is said to be

in normal form if it cannot be further β-reduced, that is to say, the

lambda term M is in normal form if there is no N such that M→β N.

Not all terms have normal forms. The lambda term (λx.xx)(λx.xx),

sometimes called Ω, has no normal form, since it reduces always and

only to itself. Some terms do have normal forms, but it is possible

to β-reduce the term an arbitrary number of times without reaching

this form. What this means practically that it is important to select the

right reducible expression (redex) to β-reduce, otherwise one

might continue β-reducing without ever terminating in the normal

form. It is easy to produce examples of such terms by throwing Ω

into the mix: (λxy.y)Ωz has as its normal form z, but of course one

could repeatedly select Ω for reduction and thereby never realize this.

Terms that always reduce to normal form within a finite number of β-
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reductions, regardless of the reduction strategy employed, are called

strongly normalizing.

Now that the concepts of normal forms and strongly normalizing

terms is clear, we can explicate the Church–Rosser theorem. Altogether,

it means that, if a term has a normal form, then regardless of the re-

duction steps we use to reach that form, it will always be possible from

anywhere along the way to reach the normal form: there’s no way we

can misstep and be kept from ever reaching the normal form short

of intentionally, repeatedly making the wrong choice of expression to

reduce. If the term is strongly normalizing, we can go one better and

state that the reduction steps we use to reach its normal form are com-

pletely irrelevant, as all chains of reductions will eventually terminate

in that normal form. This also shows that the normal form is unique,

for if N1 and N2 were two distinct normal forms of a given term, then

they would have to share a common term N3 to which they could both

be β-reduced.

Recursion and Y

The pure, untyped lambda calculus is Turing complete. An important

part of achieving this degree of expressive power is the ability to make

recursive definitions using the lambda calculus. The way to do so is

surprisingly succinct. One common means is what is known as the

paradoxical combinator, universally designated by Y. Here is

its definition:

Y = λf.(λx.f(xx))(λx.f(xx))
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It is also known as the fixed-point combinator, since for every F,

we have that F(YF) =β YF.∗ Let us see how exactly this works:

YF ≡ (λf.(λx.f(xx))(λx.f(xx)))F

→β (λx.F(xx))(λx.F(xx))

→β F((λx.F(xx))(λx.F(xx)))

=β F((λf.(λx.f(xx))(λx.f(xx)))F)

≡ F(YF)

At each step, we have used color to indicate the terms that are involved

in producing the next step. We have indicated at each step whether

syntactic equivalence, β-reduction, or full-fledged β-conversion was

employed. As you can see, we begin by using simple β-reduction. The

breakthrough that permits us to arrive at the desired form is replacing

the two instances of F in the inner term ((· · · F · · · )(· · · F · · · )) by the

application of λf.(· · · f · · · )(· · · f · · · ) to F.

If you look at the steps leading up to that abstraction, you can see

how Y leads to recursion. Let us carry this process out a bit further:

YF ≡ (λf.(λx.f(xx))(λx.f(xx)))F

→β (λx.F(xx))(λx.F(xx))

→β F(λx.F(xx))(λx.F(xx))

→β F(F(((λx.F(xx))(λx.F(xx))))

→β F(F(F(((λx.F(xx))(λx.F(xx)))))

...

As you can see quite plainly, YF leads to repeated self-application of F.

This iteration of F is how it produces a fixed point.

∗ Y is not unique in producing fixed points. Turing’s fixed point operator Θ =
(λab.b(aab))(λab.b(aab)) will do just as well.
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A Brief Word on Reduction Strategies

Before we move on to extend the lambda calculus with some concepts

a bit more elaborate and convenient than the low-level but elegant

pure, untyped lambda calculus, it behooves us to put in a brief word

about reduction strategies.

In the context of the lambda calculus, we call them reduction strate-

gies. In the context of programming languages in general, we use the

phrase order of evaluation. They both come down to the same

thing: where do we want to focus our efforts? And, perhaps more im-

portantly, where should we focus our efforts?

The choices we make in terms of lambda calculus reduction strategy

have equivalents in terms of order of evaluation of functions and their

arguments. The fundamental question is this: should we evaluate the

arguments before passing them on to the function, or should we call

the function and just point it at its arguments so it has access to them

and their values as needed?

If we first deal with the arguments and only then with the func-

tion as a whole, then we are employing a call-by-value evaluation

strategy, so called because the function call takes place with the values

of the arguments provided to the function. The arguments are evalu-

ated, and the resulting value is bound to the formal parameters of the

function.

If we instead begin by evaluating the body of the function itself and

only evaluate the arguments as necessary, we are pursuing a call-

by-name evaluation strategy. Call-by-name gets its name from the

way that the formal parameters are bound only to the names of the

actual arguments. It is only when the value of one of the arguments

is required to proceed with evaluating the function’s body that the

argument is evaluated.

The lambda calculus equivalent of call-by-value is known as the ap-

plicative order reduction strategy. We can describe the applicative
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order strategy quite simply: reduction is first performed in the term to

which the abstraction is being applied. Only when we have exhausted

this possibility do we perform the application.

If we strengthen this preference into a hard and fast rule that no β-

reduction is to be performed under an abstraction, then we can define

an alternative normal form, known as weak normal form:

• Variables are defined to be in weak normal form.

• An application MN is in weak normal form if and only if both

M and N are in weak normal form.

• An abstraction λx.M is in weak normal form.

It is in the treatment of abstractions that weak normal form differs

from normal form: weak normal form considers all abstractions λx.M

to already be in weak normal form, while normal form requires that

the term M being abstracted over also be in normal form.

The lambda calculus equivalent of call-by-name, on the other hand,

is known as the normal order reduction strategy and corresponds

to always select the leftmost–outermost reducible expression for reduc-

tion. Normal order is so called because, if the term has a normal form,

we can always reduce it to normal form by employing the normal or-

der reduction strategy. The same cannot be said for applicative order,

which can fail to reduce a term to normal form even when one exists.

Again, the Ω term makes it easy to give an example. Something as

simple as (λxy.y)Ωz suffices. Under normal order evaluation, we first

β-reduce (λxy.y)Ω →β (λy.y) and then apply the result to z, giving

the normal form z. With applicative order evaluation, however, we be-

gin by β-reducing the first argument, Ω – and that is as close as we

shall ever get to the normal form z, since Ω has no normal form.
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Strictness

If a computation never terminates, as with the attempt to β-reduce

Ω to normal form, then we say that it diverges. An important con-

cept for functions is that of strictness. We say a function is strict

in a given parameter if the evaluation of the function itself diverges

whenever the evaluation of the parameter diverges. The function λxy.y

given above is strict only in its second argument, y, since we can evalu-

ate the function even when a divergent term is substituted for x, as re-

cently demonstrated. A function that is strict in all arguments is called

a strict function. The function λx.x can readily be seen as strict,

since this function is simply the identity function.

η-Conversion

Strictness is important to understanding the appropriateness of a dif-

ferent sort of convertibility relationship between terms. This type of

conversion expresses the equivalence of a function expecting some

number of arguments and a function that “wraps” that function and

provides it with those arguments. We call two such expressions M and

N η-convertible, written M =η N, and we define η-conversion as

λx.Fx =η F, x /∈ FV(F) .

The last part, x /∈ FV(F), should be read as “where x is not among the

free variables of F” and serves to exclude abstraction over variables

that would capture a free variable in F from being defined as η-con-

vertible with F.∗

η-conversion is useful because it identifies a host of identically-be-

having terms. We can produce an infinite number, even when we iden-

tify α-convertible expressions, starting with something as simple as

∗ If you are familiar with the concept of extensional equality, you should have no trouble
remembering the definition of η-conversion if you think of it as “η for extensional.”
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the identity λx.x. All we need do is repeatedly abstract this term with

respect to x. This gives rise to the sequence I of terms

I1 = λx.x

I2 = λx.(λx.x)x

I3 = λx.(λx.(λx.x)x)x

I4 = λx.(λx.(λx.(λx.x)x)x)x

...

Since x is always bound within the body of the abstraction, this causes

no problems with variable capture. But all the terms in this sequence

behave the same way; in fact, the application of any one of them to a

term M is β-convertible with the application of any other to the same

term M and, ultimately, with M itself: InM →β In−1M →β · · · →β

I1M→β M.

But η-conversion might nevertheless be an inappropriate notion of

equality in some cases. If we are reducing only to weak normal form,

for example, then reduction of λx.Ω terminates immediately, while

reduction of Ω will never terminate. The introduction of types can

also pose problems for the notion of η-conversion. But where we can

employ η-conversion, we can at times drastically reduce the number

of substitutions required due to β-reduction by simplifying the terms

involved using η-conversion first. In the end, whether we decide it is

appropriate or not to add η-conversion to our lambda calculus, the

operational equivalence between terms that it highlights is well worth

keeping in mind.

12.2.2 Extending the Lambda Calculus

While we have taken some time to explain the lambda calculus, the

system itself is quite lean. It is also powerful. Indeed, we can use it to
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describe any computation we could describe with a Turing machine.

Such a description is also similarly lengthy and inconvenient. Thus,

we will extend the lambda calculus in two major ways:

• We will introduce a new set of normal-form lambda terms as

constants, so that the numbers, booleans, and so forth become

primitive concepts of the calculus rather than needing to be en-

coded in terms of lambda terms.

• We will introduce typing into the system.

These extensions also serve to raise the level of abstraction of the

lambda calculus closer to that of a functional programming language.∗

Untyped Lambda Calculus with Constants

We first extend the pure untyped lambda calculus by adding con-

stants. As when we introduced variables, we can formally define the

constant terms as normal form lambda terms built from a base symbol

c distinct from the v used for variables and many primes:

Λ→ V | C | (Λ Λ) | (λ V Λ)

V → v | V ′

C→ c | C′

and then our use of, say, c to represent the integer 0 becomes purely a

matter of convention. But just as we established variable naming con-

ventions to make our notation more readable, so too can we establish

conventions for writing constants that allow 0, 1, True, and so forth to

appear directly in our notation.

But we are not restricted to adding only static constants such as the

numbers and booleans. We can also take some to be operators, such

as a test for equality =, addition +, subtraction −, or even If . These

∗ This section follows the development of the lambda calculus in Hudak [57] closely,
including use of some of the same examples.
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clearly operate on other terms, but how remains to be defined. That

is the purpose of δ-rules, which are basically ad hoc reduction rules

for dealing with constant terms much as β-reduction describes more

generally how to reduce expressions of any lambda terms.

For example, we can give a set of δ-rules that make + operate on the

particular constants that we have identified with the integers in a way

consistent with our intuitive understanding of addition:

(+ 0) 0→δ 0

(+ 0) 1→δ 1

...

(+ 1) 0→δ 1

...

We can deal with If likewise:

If True e1e2 →δ e1

If False e1e2 →δ e2

In extending the system with δ-rules, we must be very careful to

preserve properties we consider essential to the system, such as the

Church–Rosser properties. For example, if we were to add δ-rules such

that Or becomes a left-to-right, short-circuiting operator, we would be

fine:

Or True e→δ True

Or False e→δ e
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But if we wanted to add δ-rules truer to our intuitive understanding of

Or, namely that it yields true if either of its operands is true, regardless

of the value of the other operand, we might add rules such as:

Or True e→δ True

Or e True→δ True

Or False False→δ False

But, with the addition of these rules, it would no longer be true that

a normal order reduction strategy guarantees reduction of a term to

normal form if it has one. In fact, no deterministic reduction strategy

would suffice to regain that property! Any deterministic strategy, on

encountering Or e1 e2, would have to always reduce e1 or always

reduce e2 before reducing the other term. If it always first reduces e1,

then it will fail to reduce Or Ω True to normal form; if it always first

reduces e2, then it will fail to reduce Or True Ω to normal form.

Typed Lambda Calculus with Constants

The addition of constants to the lambda calculus merely made it eas-

ier for us to express concepts already expressible in the pure lambda

calculus. The central notions of abstraction, application, and of the var-

ious kinds of reduction and conversion that we had introduced for

the lambda calculus remained untouched. The only definition we re-

ally had to modify was that of a normal form, and we modified that

implicitly with our introduction of constants as distinguished, normal

form lambda terms. The introduction of types, however, fundamen-

tally changes the lambda calculus.
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To develop the typed lambda calculus with constants, we begin by

adopting a lambda term grammar identical to that used for the lambda

calculus with constants:

Λ→ V | C | (Λ Λ) | (λ V Λ)

V → v | V ′

C→ c | C′

We then introduce alongside this a parallel set T of types compris-

ing type variables, constants, and function types:

T → V | C | F

V → α | V ′

C→ ζ | C′

F→ (T → T)

Notational conventions accompany this introduction:

• σ, τ, υ represent arbitrary types.

• α, β, γ represent arbitrary type variables.

• The function type arrow→ is considered to associate to the right.

Thus, σ→ τ→ υ should be read as σ→ (τ→ υ).

We will not need to refer to arbitrary type constants, so no convention

addresses them. Just as we named certain constant lambda terms 0, 1,

and so forth, so too can we introduce names for various constant types,

such as int, real, and bool.

Lambda terms and types come together in statements. A state-

ment M : σ says that a given term M, the subject of the statement,

can be assigned type σ, the predicate of the statement.

Whereas lambda terms formed the basis of the pure lambda calcu-

lus, statements make up the basis of the typed lambda calculus. When
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we introduced constants into the pure lambda calculus, we had to in-

troduce δ-rules that formally related those constants within the system.

We used these δ-rules to establish relationships that agreed with our

intuitive understanding of how the constants were interrelated, but we

had to be sure not to introduce a careless rule that changed the very

properties of the lambda calculus that make it so useful to us. The par-

ticular statements that make up the basis of the typed lambda calculus

are also left to our discretion, and we can use them in a similar way.

Thus, we will assume, for example, that True : bool and False : bool,

and that 0 : int, 1 : int, and so on. Formally, the basis – let us call it B –

is composed of a set of statements whose subjects are distinct variables

or constants.

Using this basis, we can assign types to other lambda terms. If we

can derive a statementM : σ from the basis B, then we write B `M : σ.

All statements can be derived using three rules:

• basis. If x : σ is an element of the basis, then we can make the

statement that x : σ.

x : σ ∈ B

B ` x : σ

• → introduction. Abstraction is analogous to creating a func-

tion by transforming a variable in an expression into a parameter.

The type resulting from abstraction reflects this.

B ` x : σ B `M : τ

B ` (λ x M) : (σ→ τ)

• → elimination. Application is analogous to applying a func-

tion to an appropriate argument, and this is reflected in the type

of an application.

B `M : (σ→ τ) B ` N : σ

B ` (MN) : τ
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The introduction of types has important implications for the central

properties of the lambda calculus. The Church–Rosser property per-

sists, but we gain several other powerful properties:

• subject reduction. Type persists unchanged through β-re-

duction.

B `M�β M′ B `M : σ

B `M′ : σ

• strong normalization. If a term can be assigned a type,

then it is strongly normalizing.∗

• decidability of type-checking. Given a basis B and a

statement M : σ, it is decidable whether B `M : σ.

• decidability of type inference. Given a basis B and a

term M, we can decide whether there is any σ such that B `M :

σ. If there is, then we can use B and M to compute such a σ.

These are indeed powerful, useful properties, but the overall expres-

sive power of the lambda calculus in fact decreases with the introduc-

tion of types. Recall that, in the pure lambda calculus, there were terms

without normal forms, such as Ω. The term that we used to introduce

recursion into the lambda calculus, Y, has no normal form. BothΩ and

Y apply a term to itself:

Ω ≡ (λx.xx)(λx.xx)

Y ≡ λf.(λx.f(xx))(λx.f(xx))

As you can see, they actually make use of nested self-application: both

terms contain the application (x x) within the application of one ab-

straction to the selfsame abstraction. In Ω, this abstraction is λx.xx; in

Y, it is λx.f(xx).

∗ Recall that a term is strongly normalizing if and only if it alwaysβ-reduces to normal
form after a finite number of reductions.
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But these terms cannot be assigned a type, for the fundamental rea-

son that self-application is not typable. Let us see what happens when

we attempt to assign a type to λx.xx. We know that x must have some

type, say, σ. The rule of → introduction specifies that, to apply one

term to another, the first term must be able to be assigned a function

type and the second term must be able to be assigned the same type

as that to the left of the arrow in the function type. But this means that

the type of x must be a solution to the type equation σ = (σ→ τ), and

there is no such type in our typed lambda calculus with constants.∗

We are not so sad to see Ω become untypable. A term that does

nothing except lead to endless β-reduction is useless to us. But we

needed Y to define recursive functions. Regaining Y is the point of our

next extension.

Typed Recursive Lambda Calculus with Constants

After the effort of the past two extensions to the lambda calculus, ex-

tending the typed lambda calculus with constants to encompass recur-

sion is surprisingly simple. All we need do is introduce a polymorphic

fixed-point operator among our constants, introduce an appropriate

type into our basis, and craft a δ-rule to make this operator behave as

we desire.

Thus, we anoint Y our fixed-point operator name of choice. The only

functions we want to apply Y to are those that must recurse upon

themselves. As such, they must consume the very type of value they

produce, that is, the type of any such function must be (σ → σ). A

fixed point of such a function must have the type of the argument of

the function. Since Y, given a function, produces a fixed point of that

function, we assign Y the family of types Y : (σ→ σ)→ σ, which is to

say that we add a Yσ : (σ → σ) → σ to our basis B for every type σ

that can be formed according to our grammar for types.
∗ It is possible to extend the lambda calculus so that self-application becomes typable;

see the discussion in Barendregt and Hemerik [19, Section 3.2, pp. 14–17] of recursive
types and the λµ-calculus.
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That Y in fact is a fixed-point operator is represented in the lambda

calculus by the fact that YF =β F(YF). The final element of our exten-

sion, then, is a family of δ-rules corresponding to the family of typed

fixed-point operators Yσ that reintroduces this convertibility:

B `M : (σ→ σ)

(Yσ M)→δ (M (Yσ M))

B `M : (σ→ σ)

(M (Yσ M))→δ (Yσ M)

This has the effect that, if M : (σ → σ), then (Yσ M) and (M (Yσ M))

are interconvertible. We call this type of conversion typed Y-con-

version.

With this final extension, we now have a lambda calculus that closely

resembles the lambda calculi that underlie modern functional languages.

But, before we talk of them, perhaps we ought to go over the develop-

ments and languages that led to today’s functional languages.

12.3 bibliographic notes

De Bruijn indices were first described in de Bruijn [38]. Other nota-

tions for variable binding have been developed more recently; McBride

and McKinna [80] describes an interesting hybrid that uses de Bruijn

indices for bound variables and (ideally, meaningful) names for free

variables.

We have not made as fine a distinction between the different reduc-

tion strategies as that made by Sestoft [118]. Our description equates

call by value with applicative order and call by name with normal or-

der, while he carefully distinguishes these in terms of where reduction

can occur.

We have barely scratched the surface of the lambda calculus and

type theory. Those interested in the impact of the lambda calculus

on logic and computer science would find Barendregt [18] interesting

reading. Turner [130] explains the significance of the lambda calculus
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and Church’s thesis in general for functional programming in but one

chapter of a book [94] dedicated to examining Church’s thesis seventy

years after its postulation. If the theory of the lambda calculus itself is

more in line with your interests, Barendregt [17] is the standard refer-

ence for the untyped lambda calculus and develops many aspects of

the topic in tremendous detail. The lambda calculus in one form or an-

other is also often hurriedly introduced as more or less new material

where needed in books and articles dealing with functional program-

ming.

The concept of type can itself be introduced into the lambda calcu-

lus in a variety of ways and then subsequently elaborated. Cardelli and

Wegner [29] provides a very readable introduction to practical issues of

types and programming languages – the presentation of types in this

chapter is significantly influenced by the presentation therein – while

Barendregt and Hemerik [19] looks more carefully at the ways typing

can be introduced formally into the lambda calculus; our formal def-

inition of the pure, untyped lambda calculus follows in part the two-

page summary given near the beginning of this article. The process

we followed of gradually extending the pure untyped lambda calculus

into the typed recursive lambda calculus with constants follows that

of Hudak [57]. Thompson [125], developed from lectures given at the

University of Kent and the Federal University of Pernambuco, Recife,

Brazil, introduces types in the context of programming languages and

constructive logic, while Pierce [112] is a full-length textbook on type

theory, and Pierce [111] an edited collection of research papers on the

topic.
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H I S T O RY

13.1 predecessors

There does not appear to be a consensus on which language was the

first, truly functional language. This is because the argument inevitably

ends up being about how the terms of the argument should be defined.

What is a functional language? Are there elements it must have? Ele-

ments it must not? Do research languages count, or does a language

have to have seen significant “real world” use? Is a given “language”

really a language, or is it simply a dialect?

You will have to make up your own mind about these matters, pos-

sibly on a case-to-case basis. Regardless of your decisions, there is a

good consensus on which languages contributed to the development

of the functional family, regardless of whether or not they truly belong

to it. To dodge the whole issue, we will simply characerize them as the

predecessors of modern functional languages.

13.1.1 Lisp

The earliest predecessor is the list processing language. Known as LISP

when it first appeared in the late 1950s (it was all the rage then to

capitalize the names of programming languages), and since grown into

a diverse family of Lisps, it appeared shortly after Fortran. It originated

with McCarthy, and, in fact, elements of its list processing facilities

were first implemented as extensions of Fortran [122].

171
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Lisp grew out of artificial intelligence, particularly the expert sys-

tems and their need to perform list processing and limited theorem

proving. In fact, the list is its primary and most characteristic data

type. Lisp programs themselves can be characterized and represented

as lists, and this lends Lisp its most distinctive feature: its heavy use of

parenthesization. The ability of Lisp to represent itself in itself – Lisp

lists are Lisp programs are Lisp lists – is known as homoiconicity,

and this lends Lisp much of its power and extensibility.

This focus on lists is unlike the lambda calculus, which features func-

tions as its sole data type, and even in its extensions remains solidly

anchored by its focus on the function. McCarthy draws on the lambda

calculus solely to provide a notation for “functional forms” as opposed

to functions – basically, to indicate which positional argument should

be bound to which variable name in a function’s definition. In intro-

ducing Lisp, he in fact states that the “λ-notation is inadequate for

naming functions defined recursively” and introduces an alternate no-

tation [83]. Many languages today get by using the lambda term Y that

we introduced earlier for this purpose; the impact of the lambda cal-

culus on Lisp was superficial, and this is in good part why one might

want to exclude Lisp from a list of functional languages.

Much of the spirit of functional languages, however, first appeared

in Lisp: functions as “first-class citizens” and the use of recursive func-

tions as opposed to step-variable–based loops, as well as an elegant,

remarkably simple definition characterize both Lisp and the modern

functional languages. As far as elegance goes, it is possible to write a

Lisp interpreter in not very many lines of Lisp.

Lisp flourished as artificial intelligence flourished, and it weathered

the cold AI winter, perhaps even better than AI did itself. It was readily

implemented by many groups and extended in many different direc-

tions, so Lisp soon became more a family of languages than a single

language. From the 1960s on, there were two major Lisps (Interlisp
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and MacLisp) and many other significant Lisps. Today, the two pri-

mary Lisps are Common Lisp, the result of a standardization effort in

the 1980s, and Scheme, which in the mid-1970s sprang out of ongoing

research in programming language theory and so was inspired more

immediately by the lambda calculus.

13.1.2 Iswim

Iswim (for “if you see what I mean”) is a family of programming

languages developed in the mid-1960s by Peter Landin. It is the first

language that really looks like modern functional languages. In stark

contrast to Lisp, it is not all about lists, it uses infix notation, and it

is thoroughly based on the lambda calculus. It also features let and

where clauses for creating definitions local to a given scope. This is one

of the most immediately visually distinctive elements of modern func-

tional languages. Iswim also allowed the use of indentation (signifi-

cant whitespace) for scoping alongside the more common punctuation-

based delimiters.

13.1.3 APL and FP

APL (“a programming language”), developed in the early 1960s by

Kenneth Iverson, was never intended to be a functional programming

language, but rather an array programming language. Thus, it pro-

vided built-in support for operating on arrays in terms of themselves

rather than in terms of their elements, as well as ways of compos-

ing these array operations. It is also notable for its concision: it was

intended to be programmed in using a specialized alphabet. This, cou-

pled with its approach to handling arrays, led to very compact pro-

grams.
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It appears to have influenced John Backus in his development of FP.

FP itself never saw much, if any, use. It was advocated in Backus’ 1978

Turing award lecture in which he warned of the “von Neumann bottle-

neck” that ultimately constrains imperative programming languages

to “word-at-a-time programming.” FP intended to do for functional

programming what structured programming did for imperative pro-

gramming with its standard control flow constructs by providing a

few higher-order functions (“functional forms”) that he considered es-

sential and sufficient for whatever one might want to do.

FP is most notable in the history of functional languages for the

credibility it lent to the field – Backus received the Turing award in

good part because of his fundamental role in the development of For-

tran – and the interest it generated in functional programming. While

the development of modern functional programming languages took a

different road than that defined by FP, FP’s emphasis on algebraic rea-

soning and programming using higher-order functions is very much

of the same spirit.

13.2 modern functional languages

While the who’s in, who’s out of older languages is up for debate,

most modern functional languages bear a close family resemblance.

The central features of a modern functional language are:

• first-class functions and a firm basis in the lambda calculus;

• static typing coupled with type inference and polymorphism;

• algebraic data types and pattern matching.

Most modern functional languages also feature:

• abstract data types and modules;

• equational function definitions and boolean guards.
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We will discuss each of these in turn.

13.2.1 Central Features

First-Class Functions and the Lambda Calculus

It is quite easy to represent functions in the lambda calculus and to cre-

ate functions of functions. Such higher-order functions are un-

usual in imperative languages. Among the provided data types, they

are usually second-class citizens: they have no literal representation,

but can only be created through statements, nor can they be assigned

to variables, passed into or returned from other functions. They are

not on par with the integers or even characters.

Functional languages make functions first-class citizens. This means

that:∗

• Functions are denotable values: there is some way to describe a

function literally, just as you would write 5 to denote the integer

five without having to give it a name.

• Functions can be passed into functions: such functions with func-

tional arguments are known as higher-order functions.

• Functions can be returned from functions.

• Functions can be stored in data structures: you can create lists of

functions as readily as you would lists of integers.

• Storage for functions is managed by the system.

With functions as first-class citizens, it easy to create and employ higher-

order functions, and functional programming has a rich vocabulary

describing common, heavily-used higher-order functions and common

∗ This particular list is due to Mody [92]; others provide similar lists of “rights” char-
acteristic of first-class data types. Some authors go further and describe the rights
typical of second- and third-class data types, as well [for example 117, §3.5.2].
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types of higher-order functions. First-class functions are also employed

extensively in the form of curried functions.

First-class functions is the most striking result of functional lan-

guages’ basis in the lambda calculus, and it heavily influences the

entire style of programming in functional languages. But taking the

lambda calculus as the starting point of the entire programming lan-

guage is the most radical characteristic of modern functional languages,

and the effects of this choice are felt throughout the resulting lan-

guages.

Static Typing, Type Inference, and Polymorphism

Modern functional languages are statically typed. They are based, not

on the untyped lambda calculus, but on some variety of the typed

lambda calculus. The introduction of types has advantages from the

software engineering point of view. It also has advantages from the

point of view of compiler performance.

Static typing in imperative languages is often regarded as a burden

because of the need to declare the type of all variables and functions.

Modern functional languages relieve this burden through type infer-

ence. This means that code written in functional languages is free to

omit redundant type declarations: if you state that x = 5, then there

is no need to reiterate that x is an Integer for the sole benefit of the

compiler. Modern functional languages are designed to allow type in-

ference, and their compilers are designed to perform it.

A surprising result of type inference is that it makes polymorphism

the standard behavior for functions. Whenever a function could be

construed as taking operands of a more general type, it is, unless an

explicit type declaration is supplied that restricts this.

The standard higher-order function map is a good example of this. map

takes as its arguments a function and a list and produces a list contain-

ing the results of applying the function to each element of the original
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list in order. That description is somewhat complex; an example would

perhaps be simpler. If we take for granted a boolean function isNonZero

that takes an integer argument and returns either True if the number

is nonzero or False if it is zero,∗ then

map isNonZero [0, 1, 2, 3] �
evaluates to

[isNonZero 0, isNonZero 1, isNonZero 2, isNonZero 3] �
and thence to

[False, True, True, True] �
The type of map is (a -> b)-> [a] -> [b], where a and b here are type

variables as discussed in Polymorphism, p. 137.

Algebraic Data Types and Pattern Matching

A distinctive characteristic of the type systems of modern functional

languages is their support for creating and using algebraic data

types (adts). Algebraic data types are so called because they can

be looked upon as a sum of products of other data types. What this

means practically is that algebraic data types function as discriminated

(tagged) unions; the tags are called data constructors and serve

to wrap the supplied data in the algebraic data type. Pairs and lists are

simple examples, but since special syntax is often supplied to make

their use more natural, they are not very good examples of creating

ADTs.

Let us instead consider an algebraic data type representing a tree

with values of some unspecified type stored in the leaves. The declara-

tion of such a data type might look like

data Tree a = Leaf a | Branch (Tree a) (Tree a) �
∗ We can define isNonZero in Haskell as isNonZero x = not (x == 0).
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(The unspecified type that is being wrapped is represented here as a

.) This also happens to be a recursive data type: each branch wraps a

pair of subtrees. The declaration tree = Branch (Leaf 1)(Leaf 2) gives

the variable tree the value of a branch with two leaves of integers.

Thus, we have values of type Integer substituting for the type variable

a in Tree a. The variable tree thus has type Tree Integer, read “tree of

integer,” and corresponds to the tree

•

����������

��
????????

1 2

We have seen that it is simple to create an algebraic type and build

instances of that type. But how do we get at the wrapped information?

To decompose algebraic data types, modern functional languages sup-

port pattern matching.

The fundamental pattern-matching construct is the case expression.

Its basic form indicates the variable for which cases are being enumer-

ated and then sets up a correspondence between patterns and expres-

sions to evaluate as the value of the case expression in the event the

corresponding pattern matches the provided variable. The patterns are

checked in the order they are listed; the first matching pattern decides

which expression is evaluated. Still informally, but somewhat more

symbolically, we could represent the form of the case expression as

case 〈variable〉 of (〈pattern〉 -> 〈expression〉)+

As an example, let us suppose we wish to count the number of

branches in a tree. An example of such a function is countBranches of

Listing 13.1 on page 179. The patterns are analogous to the expressions

we would use to construct the type of data that the pattern matches;

the variables of the patterns, rather than passing data into the construc-
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Listing 13.1: Pattern-matching via case

countBranches tree = case tree of
Leaf _ -> 0
Branch a b -> 1 + countBranches a

+ countBranches b �
tors, instead are used as names for the data that was initially supplied

as parameters to the constructor.

The type of this function together with its name provide an excel-

lent summary of its behavior. It also provides us with another exam-

ple of polymorphism and our first example of subtyping. The type of

countBranches is (Num t1)=>Tree t -> t1. Here, (Num t1)=> expresses a

restriction on the type of the type variable t1 used in the rest of the

type expression. It says that the type of t1 must be some subtype of the

type class Num. The underscore you see in the definition of this function

is used in patterns as a “don’t care” symbol: it indicates the presence

of a value that we choose not to bind to a name, since we do not intend

to refer to the value.

13.2.2 Other Features

Abstract Data Types and Modules

abstract data types are data types that hide their concrete rep-

resentation from the user. In this way, the representation of the type

becomes internal to it: the fact that, say, a stack is actually implemented

as a list is hidden, and only operations dealing with stacks as stacks

are exposed. This means that the implementation of the abstract type

can be changed as necessary. For example, if lists proved too slow to

support the heavy use we wished to make of stacks, we could move

instead to some other representation without having to change any of

the code that used our stacks.
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This kind of implementation hiding together with interface exposure

is frequently accomplished through a module system. The existence of

a powerful and usable module system is an important part of the “com-

ing of age” of functional languages, because modules are necessary to

support “programming in the large” as is necessary in real-world envi-

ronments where complex problems must be solved and large amounts

of code are involved. In terms of modules, an abstract data type’s repre-

sentation is hidden by not exporting representation-specific definitions

for use in the program importing the module.

In the context of abstractions of algebraic data types, this takes the

form of not exporting the data constructors. Instead, other functions

are exported that make use of the data constructors without exposing

this fact to the user of the abstract data type. A simple version of such

a function would simply duplicate the data constructor. More complex

versions can build in bounds-checking, type-checking, or normaliza-

tion of the representation – for example, such a “smart constructor”

could be used to ensure an internal tree representation remains bal-

anced.

Equations and Guards

Modern functional languages support a very readable, compact nota-

tion for defining functions that builds on the pattern matching per-

formed by case statements. They allow functions to be defined as a

sequence of equations. Listing 13.2 on page 181 reimplements the func-

tionality of Listing 13.1 (p. 179) using an equational style of function

definition. If you compare this new definition to the earlier definition,

which used the case expression, you will see that the pattern matching

is implicit in the syntax used to define functions equationally.

Another feature of modern functional languages that simplifies func-

tion definition is guards. Guards are boolean predicates that can be

used in function definitions and case statements. Guards block the ex-
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Listing 13.2: Pattern-matching via equational function definition

countBranches2 (Leaf _ ) = 0
countBranches2 (Branch a b) = 1 + countBranches a

+ countBranches b �
Listing 13.3: Cases with guards

isLeaf t | countBranches t > 0 = False
| otherwise = True �

pression they precede from being used when they evaluate to false,

even if the pattern preceding the guard matches. The first pattern and

guard successfully passed determines the case that applies to the given

value.

An an example, we could use one of the countBranches functions

given earlier to define an isLeaf predicate for use with our trees. If the

tree has zero branches, it must be a leaf. If it has one or more branches,

it must not be. In Listing 13.3 on page 181, we use a guard that applies

this number-of-branches test in order to prevent the function isLeaf

from evaluating to True when its argument t is a tree with more than

zero branches.

We can also describe guards in terms of how the same effect could be

accomplished using other expressions. Guards used with function def-

initions can be seen as equivalent to chained if expressions where each

successive guard appears in the else branch of the preceding guard.∗

The expressions being guarded in the function definition become the

contents of the then branch that is evaluated if their guard evaluates

to true. A translation along these lines of the isLeaf function of List-

ing 13.3 (p. 181) is:

isLeaf2 t = if countBranches t > 0 then False else True �
∗ We do indeed mean if expressions, not if statements. An if expression can be used

anywhere an expression is expected. The else branch is always required, which means
the expression will always have some value, either that of the true or the false branch.
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Listing 13.4: Guards as chained if-then-else–expressions

isLeaf3 t = if countBranches t > 0
then False
else if True

then True
else True �

But, since the otherwise of Listing 13.3 (p. 181) is simply another name

for True, we can produce a more faithful (and redundant) translation

of the original isLeaf function, as shown in Listing 13.4 on page 182.

We can similarly transform a case statement that uses both patterns

and guards, but this requires a significant amount of nesting and du-

plication. We must first attempt to match the patterns. As before, if a

pattern does not match, the next pattern is tried. Each guard migrates

to the corresponding expression. The original expression is wrapped

in an if expression that tests the corresponding guard condition. If the

test succeeds, the then branch is the expression corresponding to the

pattern just matched and guard just passed is evaluated. Otherwise,

we must duplicate the remaining patterns and guards, and transform

them similarly.

An example should clarify this. We will not use descriptive names as

before, because they would obscure the transformation and motivating

such descriptive names would unduly prolong this discussion. The

case expression with three guarded branches of Listing 13a (p. 183)

can be transformed as described above into the nested case expressions

without guards of Listing 13b (p. 183).

These transformations can be adapted to handle multiple guarded

expressions per pattern, but transformation process only becomes more

tedious. The examples given should suffice to demonstrate how much

the use of guards simplifies both reading and writing of functional

programs using pattern matching.
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Figure 13: Transforming a case statement to eliminate guards
(a) With Guards

case E of

p1 | g1 → e1
p2 | g2 → e2
p3 | g3 → e3

(b) Without Guards

case E of

p1 → B1
p2 → B2
p3 → B3

where

B1 = if g1
then e1
else

case E of

p2 → B2
p3 → B3

B2 = if g2
then e2
else

case E of

p3 → B3
B3 = if g3

then e3
else error ("Patterns not"++

" exhaustive")

13.3 classified by order of evaluation

Functional languages developed along two branches. These branches

are distinguished by their evaluation strategy: one branch pursued the

applicative order, call-by-value evaluation strategy; the other pursued

the normal order, call-by-name evaluation strategy. Languages belong-

ing to the applicative order branch are called eager languages be-

cause they eagerly reduce functions and arguments before substituting

the argument into the function. Presented with the application fM,

where f →β f′ and M →β M
′
, an eager language will reduce fM to

f′M′ and only then substituteM′ into f. Languages that are part of the

normal order branch are called lazy languages, because they delay

reducing functions and arguments until absolutely necessary. When a

function is applied to an argument, they simply substitute the argu-

ment wholesale and proceed with reduction of the resulting lambda
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term. When a lazy language encounters an application fM of f to M,

it immediately performs the substitution of M into f.

The branches have also diverged along the lines of purity and strict-

ness. Eager languages have historically been impure, meaning that

they allow side effects of evaluation to affect the state of the program.

destructive update (also known as mutation) is a prime example.

Using destructive update, we can sort a list in place simply by mu-

tating its elements into a sorted order. Without destructive update, we

would be forced to use the old list to produce a new list, which requires

us to allocate space for both the original list and its sorted counterpart.

While destructive update might lead to local improvements in effi-

ciency, it and other impurities destroy referential transparency,

since the same expression no longer evaluates to the same value at all

times and places in the program. Consider the list ell = [3, 2, 1].

With this definition, head ell evaluates to 3. But if we sort it in place,

later occurrences of head ell will evaluate to 1. As you can see, head

ell is no longer always equivalent to head ell: the reference head ell

is no longer transparent.

Losing referential integrity complicates reasoning about the behav-

ior of the program and the development of any proofs about its be-

havior. While impurity makes it easier to rely on knowledge of data

structures and algorithms gained while using imperative languages, it

also undermines one of the strengths of functional programming, that

its programs are easier to reason about. The ability to fall back on im-

perative algorithms also stunts the development of purely functional

data structures and algorithms. This is impurity as crutch.

While lazy languages have remained pure, this is in good part due to

necessity. Lazy reduction makes it difficult to predict when a particular

term will be reduced, and so it is hard to predict when the side effects

of a particularly reduction would occur and difficult to ensure they

occur when you wish.
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The decision between strict and non-strict semantics has also fre-

quently fallen along family lines. Eager languages are almost always

strict, by which we mean that the functions of that language default

to being strict.∗ If they are going to pursue an applicative order reduc-

tion strategy, unless they investigate some sort of concurrent pursuit

of several reductions simultaneously, then they will be stuck reducing

a divergent argument regardless of whether it would be needed by

the function once the substitution of the argument into the function is

made. This is the case when functions that ignore their argument are

applied to a divergent term: (λx.λy.y)Ω →β λy.y, but if you attempt

to evaluate Ω prior to substituting it for x in the function, the evalua-

tion will diverge. Lazy languages, on the other hand, will not fall into

this trap. Their evaluation strategy makes them non-strict.

The way that laziness forces a language to take the “high road” of

purity has been referred to as the “hair shirt of laziness” [102]. The

purity that results from adopting non-strict semantics has a pervasive

effect on the entire language. For example, one is forced to discover a

functional way to cope with input–output, and computation with in-

finite data structures becomes feasible. Infinite data structures are us-

able in a lazy language because, so long as only a finite amount of the

structure is demanded, evaluation continues only until that amount

has been evaluated.

We have provided some background on the two primary branches

of the modern functional family. Now we will briefly summarize their

history.

13.3.1 Eager Languages

The most influential eager languages have fallen under the umbrella

of the ML family. ML originally began as the metalanguage (hence the

∗ Whether it is even possible to avoid strictness in a particular case, and the particular
methods for doing so where it is possible, will differ from language to language.
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name) for the LCF theorem prover project under way at the University

of Edinburgh in the early 1970s. It bears a resemblance to Landin’s

proposal for Iswim. It is a modern functional language, and as such

supports the features discussed earlier. Its strong emphasis on type

inference was groundbreaking. Type inference was made possible by

Milner’s rediscovery of a type system earlier described by Damas and

Hindley that walked the fine line between a too powerful type sys-

tem in which type inference is infeasible and an overly restrictive type

system.

In the late 1980s, ML was standardized under the name Standard

ML. Standard ML is unusual among programming languages in that

the entire language has a formal definition, first published in 1990.

Standard ML’s support for modules (called structures in Standard ML)

is unusually extensive and complex; module signatures (interfaces) can

be specified separate from the modules themselves, and it is possi-

ble to define functions over modules (such functions are known in

ML as functors). A revised edition of the definition was published in

1997. Along with some slight changes to the language, the revision

introduced the Standard Basis Library in order to specify a common

set of functionality that all conforming Standard ML implementations

should provide.

ML’s background as a metalanguage for a theorem prover is re-

flected in its continuing use in programming language research and

theorem proving. This research is greatly aided by the published stan-

dard: extensions of the language have a solid basis on which to build.

But SML was not the only outgrowth of ML.

The Caml languages are another branch of the ML family. This

branch has arguably eclipsed Standard ML, particularly in the number

of non-research uses to which its languages have been put. Caml was

originally an acronym for “Categorical Abstract Machine Language”;

the name has been retained, though the abstract machine has long
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been abandoned in its implementation. The language began develop-

ment in 1987 for use in projects of the Formel project at INRIA; the

primary outgrowth of this has been the Coq proof assistant. Because

the language was meant for internal use, it was not synchronized with

Standard ML, since adhering to a standard would make it difficult to

adapt the language as needed to suit the problems faced in the group’s

work.

The start of the 1990s saw the reimplementation of the Caml lan-

guage. This version of Caml was called Caml Light and featured a

bytecode compiler. The interpreter for this bytecode was written in C

so as to be easily portable. A bytecode-compiled program can run with-

out changes on any platform to which the interpeter has been ported.

Caml Light was promoted as a language for education.

In 1996, Objective Caml made its debut. Objective Caml adds sup-

port for object-oriented programming to Caml Light, strong module

support, an extensive standard library, and compilation to native code

in addition to continuing support for bytecode compilation. In the

mid-2000s, Objective Caml became the inspiration for Microsoft’s F#

programming language meant to be used with their .NET framework.

The Caml family of languages provides a marked contrast to the

Standard ML family. While Standard ML was published as a formal

document with clear roots in programming language research, the de-

velopment of the Caml languages is driven by their continued use for

day-to-day programming to support other interests. Standard ML is a

single language with many independent implementations. The Caml

family, on the other hand, is defined by its provided compiler: what-

ever the compiler will accept is what the language is at any given

time. Thus, a Caml language is defined more by its reference im-

plementation than by any formal document. Objective Caml is not

just a language, but a compiler and a host of other tools (such as a

preprocessor, profiler and debugger, and tools for performing lexing
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and parsing) that come together to make up the current version of

Objective Caml.

13.3.2 Lazy Languages

Our description of modern eager languages focused on the prominent

ML family. Modern lazy languages developed a bit differently. Much

of the early work in lazy languages was done by Turner in a series of

languages developed during the late 1970s and early 1980s.

1976 saw the appearance of SASL, the St. Andrews Static Language.

It introduced the equational style of function definition and the use of

guards. Functions were automatically curried, and indentation could

be used in place of semicolons. The type system was rudimentary.

KRC, the Kent Recursive Calculator, made its debut in 1981. It made

lists easier to use by introducing a shorthand notation and list com-

prehensions. Both will seem quite familiar to anyone acquainted with

higher mathematics. Shorthand notation allowed the use of ellipsis

dots to express ranges. Thus, [1..5] is equivalent to [1, 2, 3, 4, 5],

and [1..] creates the infinite list [1, 2, 3, 4..]. list comprehen-

sions
∗ provide a compact notation for generating lists from other

lists.

For example,

[ 2*x | x <- [0..], 2*x < 100 ] �
can be read as “the list with elements 2 ∗ x, where x = 0, 1, . . . and 2 ∗

x < 100.” This is similar to the set expression {x | x ∈N ∧ 2 · x < 100}.

As you can see, the notation for the list comprehension has two sides.

The right hand side contains generating expressions and filters. Gener-

ating expressions such as x <- [0..] introduce a name. In the course

of evaluating the list comprehension, this name will be bound to each

∗ We now call them list comprehensions. At the time, they were described as both set
expressions and ZF expressions.
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value of the generating list in turn. The left arrow <- can be read as

“drawn from.” Filters evaluate to either true or false. If they all evalu-

ate to true, then the current bindings of the names introduced by the

generating expressions are used to evaluate the expression on the left

hand side of the list comprehension. The result of evaluating the left

hand side expression is appended to the output list, new bindings are

made, and the process repeats. (While this description has not gone

over all the details, it should be enough to communicate the flavor and

expressiveness of list comprehensions.)

We likened list comprehensions to the set expressions used in math-

ematics, but a list comprehension differs from a mathematical set ex-

pression in two important ways:

• It can contain duplicates.

• It is produced algorithmically and its results are ordered.

A simple list comprehension containing duplicates is [1 | x <- [1..3]]

, which produces [1, 1, 1]. That the results are ordered is necessitated

by our drawing values from lists and putting the results in a list. That

the result is produced algorithmically is important when we use infi-

nite lists, as above where x is drawn from a list of natural numbers.

Even though we know that, once the output list has had 98 appended

to it, no greater value of x will satisfy the predicate 2 · x < 100, the

interpreter will continue to evaluate the list comprehension until as

many values as we ask for have been produced; if we ask for all val-

ues, it will continue forever, since there is always one more x to try in

the infinite list [0..]. Thus, thinking of these as set expressions rather

than attractively concise ways to generate lists can lead to trouble.

Turner’s language design efforts culminated in Miranda. Miranda

was the first of his languages to feature a Hindley–Milner type sys-

tem. It included user-defined types and polymorphism. It also featured

sections, which solve a notational problem with infix operators. If
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we want to map a normal, prefix function f down a list L, then map f

L suffices. But if we wish to halve each element of the list, we must

resort to either defining a throw-away function, say half x = x / 2, or

defining an anonymous function using lambda notation, such as \ x

-> x / 2. Sections make it possible to refer to use the infix operator

directly here. Sections are written by surrounding the infix operator in

parentheses. If the operator alone is in parentheses (/), it is called a

section; if a value is supplied to the left or right, it is known as a left

or right section, respectively. Thus, we could express “halve each ele-

ment” by composing map with a right section of /: map (/2)L. Likewise,

we could generate a list of the reciprocals of all elements of the list L

using map and a left section of /: map (1/)L.

Turner founded a company in 1983 to commercialize Miranda. He

attempted to transfer lazy functional programming into industry. Mi-

randa was the most developed lazy functional programming language

of its time, but Miranda was not free. Distribution of derivatives was

prohibited without the company’s consent in order to avoid a prolifer-

ation of dialects and to keep Miranda programs portable, which led to

some conflicts with other researchers.

The late 1970s and early 1980s had seen a proliferation of similar

lazy, purely functional languages. The syntax differed, but the seman-

tics were virtually identical, so that researchers had no problem un-

derstanding each other’s papers. But the lack of a common language

was seen as a problem for both research, through the duplication of

effort, and for promoting use of lazy functional languages outside of

research, since no single language was supported and most had been

developed for research rather than industrial application.

This situation was resolved through the creation of a freely available,

purely functional, lazy language called Haskell intended for use in re-

search, education, and industry. Over the course of the 1990s, imple-

mentations of the Haskell language matured and Haskell eventually
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displaced Miranda in both education and research. Miranda continues

to be used and taught in some places, but the niche it once filled is

now occupied by Haskell.

While Haskell was intended to standardize the state of the art in

lazy functional languages, it did end up introducing new ideas. Type

classes were developed for the first version of Haskell. A type class can

be looked at as a named description of the functions that an instance

of the type class must support and the types of those functions. Types

that are declared to be instances of a specific type class then must

provide implementations of the type class’s functions. In a surpris-

ing parallel to object-oriented programming, those functions thus be-

come overloaded in a way that is resolved through a hierarchy of types.

(Object-oriented programming’s overloaded methods are resolved on

the basis of the object’s identity, an important distinction.) Type classes

have been extended in various ways as Haskell evolved, and Haskell

has become a playground for “type hackery” such as implementations

of Peano arithmetic at the type level.

The other new idea that Haskell embraced was the use of monads.

Monads entered Haskell some years after it was first standardized.

They came by way of denotational semantics; practical experience with

them in Haskell led to their extensive use to constrain side effects to

well-defined regions of a program so that referential transparency is

not destroyed. This led to a somewhat better solution to the problems

of input–output that have long plagued functional programs (about

which we will say more in the last part of this thesis).

Haskell has remained the state of the art in lazy functional lan-

guages. Its policy of allowing a published language definition to co-

exist with extensions of the language and various dialects has enabled

further research to be carried out by extending or modifying Haskell.

Extensions that are embraced by the community of Haskell users are

subsequently standardized and included in the next revision of the
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standard. Use of Haskell outside research continues to grow, as does

Haskell’s influence in the world of programming languages.

13.4 bibliographic notes

Hudak [57] surveys the history of functional programming languages

through the 1980s. It develops the concepts of the lambda calculus

and its extensions in parallel to the history. This survey particularly

influenced the overall shape of our history.

Lisp made its debut in McCarthy’s seminal paper “Recursive Func-

tions of Symbolic Expressions and their Computation by Machine,

Part I” [83].∗ There is a good body of literature on the history of Lisp.

McCarthy gives a recounting of its early history [81]. Stoyan [122] cov-

ers much the same time period, concluding their history a bit before

McCarthy, but where McCarthy’s history was based primarily on his

recollection, theirs is based on written records. It is very interesting

to watch the elements of Lisp gradually fall into place here and there

throughout various documents. McCarthy’s Lisp retrospective [82] pro-

vides a very concise recounting of the most significant innovations and

characteristic elements of Lisp. Steele Jr. and Gabriel [121] gives a fas-

cinating recounting of the tumultuous history of the Lisp family that

transpired between the early history as described by McCarthy and

Stoyan and the standardization of Common Lisp. Layer and Richard-

son [72] describes the novel elements of the Lisp programming envi-

ronment, including some information on Lisp machines, computers

that were specially developed to support Lisp and its environment. As

for Scheme, its community recently (2008) ratified The Revised6 Report

on the Algorithmic Language Scheme.†

∗ If you read this paper, you will find that we have fudged some of the technical details
of Lisp’s description and omitted recounting some significant innovations that were
not relevant to the body of functional programming. This was intentional.
† Affectionately known as the R6RS; the R6R part stands for the Revised Revised . . .

Revised Report. For the report itself as well as details on the process that led to its
ratification, see http://www.r6rs.org/.

http://www.r6rs.org/
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Iswim was introduced by Landin [69] as language framework meant

to support creation of full-featured domain-specific languages. FP was

first described in Backus’s Turing award lecture [13]. APL is described

in a book [61] by its creator, Iverson.

Gordon gives a brief history [47] of the LCF theorem prover project

that led to ML and of LCF’s successors. The type system and inference

algorithm described by Milner [87] was also independently developed

by Curry [34] and Hindley [53]. Milner’s work was subsequently ex-

tended by Damas [35]. The type inference algorithm is known as both

the Hindley–Milner algorithm and the Damas–Milner algorithm and

centers around the unification of type variables. The algorithms can

also be expressed in terms of generating and subsequently solving a

system of constraints [113]. Kuan and MacQueen have described [67]

how two compilers, one for Standard ML and one the Objective Caml

compiler, have improved the efficiency of the algorithm by ranking

type variables.

Standard ML [88, 89, 90] incorporated a module system developed

by MacQueen [74, 75, 76, 77]. Unlike the language definition itself, part

of the documentation of the Standard Basis is available online (http:

//sml.sourceforge.net/Basis) as well as in a book [45]. The website

provides only the formal specification; the book includes tutorials and

idioms, as well. An initiative (http://sml.sourceforge.net/) is under

way to support the development of common tools and test suites and

more coordination overall between Standard ML implementors and

implementations.

The recollections of a member of the team that developed Caml [32]

provided much of the material for our description of the Caml lan-

guage family. Information on the current status of the various Caml

languages can be found online (http://caml.inria.fr/).

Documentation of SASL and KRC is sparse. Very little on SASL was

published outside technical reports and user manuals. A later version

http://sml.sourceforge.net/Basis
http://sml.sourceforge.net/Basis
http://sml.sourceforge.net/
http://caml.inria.fr/
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of the user manual [131] indicates that SASL was extended with KRC’s

list comprehensions and support for floating point numbers. Another

paper [116] introduces the implementation of SASL at the Austin Re-

search Center, which went by the name ARC SASL. ARC SASL also

included list comprehensions, though there is no indication of floating

point support. KRC [129] was introduced as part of a paper explaining

why functional programming languages are superior to others, where

it is described succinctly as “(non-strict, higher order) recursion equa-

tions + set abstraction.”

Miranda was created by Turner in the 1980s [128] and heavily influ-

enced the design of Haskell. Miranda can now be freely downloaded

for personal or educational use from http://www.miranda.org.uk. The

history of Haskell, including its use of type classes and monads, is

thoroughly described [58] by several members of the committee that

developed the language. Current information, including an up-to-date

version of the published Haskell Report [100] defining the language, is

available online (http://haskell.org/definition).

http://www.miranda.org.uk
http://haskell.org/definition
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C O M P I L I N G

14.1 from interpreters to compilers

Higher-level imperative languages in a sense grew out of assembly

language. They were designed with compilation in mind. Functional

languages, however, have a history of interpretation. Lisp began solely

as an interpreted language, and ML programs were first run using

an interpreter written in Lisp. It was not immediately clear how to

compile such languages. The interpreters supplied a programming en-

vironment (for example, the interpreter might support both editing

and debugging of code from within the interpreter) and were used

interactively. The interpreter managed the runtime system, including

in particular garbage collection, which freed space allocated to

data that had become useless. Later, such interpreters were extended

to support on-the-fly compilation of function definitions.

When it comes to functional languages, the distinction between in-

terpreter and compiler becomes blurry. Interpreters can perform com-

pilation, and compilers for functional languages frequently provide an

interactive interface in addition to simple compilation facilities. When

a program written in a functional language is interpreted, the interpre-

tation manages garbage collection, storage allocation, and other such

issues. All this bookkeeping is the province of the runtime system,

and it does not go away simply because one wants to compile a pro-

gram instead of interpret it. In order to work, the compiled represen-

tation of a program written in a functional language must be coupled

with a runtime system. It is a short step from providing each compiled

195
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representation with a runtime system to providing each with both a

runtime system and its own, private interpreter. This code–runtime-

system–interpreter package is self-sufficient: it is directly executable.

Such a package is, in fact, what some compilers for functional lan-

guages produce.

Other implementations offer the option of compiling a program to

a bytecode representation for interpretation afterwards by a virtual

machine. The same bytecode program can then be run on a variety of

platforms, so long as its minimal platform – the virtual machine – is

available to host it.

14.2 the runtime system

The runtime system is an essential part of compiling functional lan-

guages. It provides a common set of functionality needed by all com-

piled programs. The two most critical services it provides are primitive

operations and storage management. Primitive operations are what ac-

tually perform the computation specified by δ-rules. They also enable

programs to interface with their environment by providing access to

functionality related to the operating system. Storage management is

essential, since space is allocated as needed and must be reclaimed in

order to prevent excessive memory use. The run time system might

also handle threading, bytecode interpretation, and runtime linking of

object code. Because the runtime system oversees primitive operations

and memory management, it also plays an important part in profiling

the runtime behavior of the compiled code.

Every compiler for functional languages will contain a run time sys-

tem of some sort. A runtime system provides several distinct, major

services. Storage management can become quite involved; primitive

operations are a necessary part of producing working code. Since each

of these services can to some degree be dealt with independently of
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the others, the compiler’s structure may not reflect a concept of a run-

time system as such, but the basic services will nevertheless be in place

and recognizable; they simply will not be grouped together.

14.3 the problem

We have seen that functional languages are based on the lambda calcu-

lus and provide the programmer with a variety of higher-level abstrac-

tions such as algebraic data types, pattern matching, and higher-order

functions. These have few parallels in imperative languages, and they

create new problems for compilation.

New abstractions are not the only source of problems encountered

when compiling functional languages. We compiled imperative lan-

guages by progressively lowering the level of abstraction of the pro-

gram’s representation till finally we were representing the program

in machine instructions. If we try the same lowering process with a

functional language, we run into a snag: instead of bottoming out

in machine language, we bottom out in the lambda calculus. Func-

tional languages are based on a model of computation fundamentally

different from the von Neumann model at the root of the impera-

tive languages. To compile a functional language, we must somehow

model the lambda calculus’s computation-through-reduction using the

von Neumann computer that is the target platform.

We will return to these problems as we go through the phases of

compilation.

14.4 the front end

The problems confronted by the front end do not change when we

move from imperative to functional languages. However, if we choose

to implement the front end in the functional language itself, we can
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take advantage of the abstractions offered by functional languages in

constructing the lexer and parser. If we instead implement generators

for lexers and parsers using the functional language, it becomes a sim-

ple matter to integrate lexing and parsing into a compiler written in

the language itself. Other programs written in the language then also

have ready access to a lexer and parser. Perhaps this goes some way to

explain why many compilers for functional languages are distributed

along with both a lexer generator and parser generator written in the

language of the compiler.∗

As you might imagine, semantic analysis takes on a new importance

in languages where type inference is taken for granted and the pro-

grammer can create new data types. Type inference can be treated as

a pass in itself. Type inference replaces type checking, since once the

compiler has reconstructed a valid type for a term, the type has been

checked. If the term cannot be assigned a valid type, type inference has

failed: either the program is not well-typed, or the programmer must

supply type annotations for some term that is valid but for which a

type cannot be inferred.

14.5 intermediate representations

Compilers for functional languages employ some intermediate repre-

sentations not used by imperative language compilers. Functional lan-

guages are on the whole a sugaring of the lambda calculus, and so

it is possible to represent a program written in a functional language

using smaller and smaller subsets of the full language. Thus, source-to-

source transformations, where code in the source language is rewrit-

ten in the source language in an altered form, play a more important

role in functional languages than is common in imperative languages.

∗ That this allows the compiler writer to avoid the complexities associated with defin-
ing and then using a foreign-function interface to programs produced using an im-
perative language could also be a motivating factor.
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Transformations into a core language are in fact sometimes used in

definitions of functional languages in order to explain the behavior of

more complex constructs.

Just as programs represented in imperative languages are translated

into ssa form because this facilitates static analysis, optimization, and

proof of a given optimization’s correctness, it was popular around the

1980s to translate a functional language program into continuation

passing style (cps). In CPS, control flow and argument passing is

made explicit. Every function is augmented with a further argument

that serves as the continuation. The function is then called with an-

other function that is to use the result of its computation as the contin-

uation argument. Rather than returning the result x of evaluating the

function to a caller, the function instead invokes the continuation with

x as the continuation’s argument. In compiling call-by-value languages,

translation into CPS has been proven to enable more transformations

than are possible in the source language.

However, since the translation to CPS is ultimately reversed during

code generation, recent compilers have moved to carefully performing

some of the transformations developed for use with CPS directly in

the source representation. CPS is still used locally for some optimiza-

tions in a process known as “contification” or local CPS conversion.

This can be used alongside ssa to enable further optimizations during

functional language compilation.

Graph representations of the program also play a bigger part in

some compilers. A large class of compilers build their back end around

graph representations of the program; reduction is performed in terms

of the graph. The development of such graph reduction machines

played an important part in making lazy evaluation feasible, since they

provide a ready way to conceive of substitution in reduction without

copying. If all terms are represented by a collection of linked nodes,

rather than copying the term to each location in order to substitute it,
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we instead make multiple links to the single original term. When one

of the substituted terms is reduced, all terms immediately share the

result: no reduction is performed more than once.

Some compilers employ typed intermediate languages. This allows

them to use the additional information provided by types throughout

compilation. Instead of simply performing type checking to ensure the

program is valid and subsequently ignoring types, the type of terms

becomes additional fodder for analysis and optimization.

14.6 the middle end

Just as in imperative compilers, the middle end is where the most ef-

fort is expended. Optimization is the key to producing good code and

a good compiler. (Naturally, different kinds of optimization will be

required depending on your idea of good.) Compilers for functional

languages are typically the subjects and results of research. Different

compilers are frequently based around entirely different intermediate

representations and back ends, so work on optimization for functional

languages is much more balkanized than research on optimization for

imperative languages. Optimizations described in the literature are

generally described in terms of improvements of an existing compiler

in the context of a particular language, set of intermediate represen-

tations, and back end. It is not always clear which parts of this work

applies in general to functional language compilation, and which parts

are inextricable from the particular context in which they were devel-

oped.

While the particular optimizations that can be performed might dif-

fer from compiler to compiler, all compilers for functional languages

confront a set of common problems due to the features that mod-

ern functional languages offer. These problems are partially addressed

through enabling and performing specific kinds of optimizations and



14.6 the middle end 201

partially through design of the back end. They can also be addressed

through extensions to the language itself that allow the programmer

to provide further information to the compiler.

Compiler-specific language extensions are not confined to functional

language compilers, of course. An imperative example would be a C

compiler adding support for an equivalent of the restrict keyword

added by the C99 standard prior to the standard’s publication. The

restrict keyword is a type qualifier meant to be used with pointers.

It is used to declare that the object pointed to by the pointer will be

accessed only through the pointer. This shortcuts the need for the com-

piler to perform difficult alias analysis to determine whether this is

the case by allowing the programmer to advise the compiler that this

relationship between the pointer and the pointed to holds. More im-

portantly, this allows the programmer to declare that this restricted

relationship holds even when the compiler would be unable to infer

the relationship through analysis, which enables previously impossi-

ble optimizations.

Such extensions are not without peril. The restrict keyword also

provides one more way for C programmers to shoot themselves in the

foot. If an optimization relies on the fact that a pointer is declared

with the restrict type qualifier, but the relationship indicated by the

qualifier in fact does not hold, then optimization could introduce erro-

neous behavior into an otherwise correct program. The same difficulty

is a matter of concern for other extensions that provide information re-

lied on in optimization that cannot be verified independently through

analysis; at the same time, an extension that does not also extend the

potential for optimization would be redundant.
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Listing 14.1: Creating a closure
A closure is a function together with an environment providing
bindings for the function’s free variables. The binding used for
each variable is the one lexically closest to where the function is
defined. In this example, the variable n is free in the definition
of addNto. The closest definition of n is that made by makeAdder.
Thus, evaluating makeAdder 3 results in a closure containing the
function addNto and an environment in which n is bound to 3.

makeAdder n = addNto
where addNto m = n + m �

14.6.1 Common Problems

Whether the compiler chooses to extend the language or not, it still

faces some common problems.

• First-class functions require the construction of closures (which

are defined below). A lazy evaluation strategy requires the cre-

ation of even more closures.

• The immutability required to preserve referential transparency

can require significant amounts of copying. For example, sort-

ing a list recursively produces a multitude of new lists. Lists can

be expensive to construct and manipulate, but they are used ex-

tensively in functional programming, as are algebraic data types

and pattern matching in general.

• Polymorphism is desirable, but it also requires that all argu-

ments be treated identically regardless of their type: no matter

whether an argument is an integer or a list, it has to fit in the

same argument box.

Closures and Suspensions

A closure is formed by taking a function definition and binding any

free variables to their existing definition in the closest enclosing (gen-

erally lexical) environment. The code in Listing 14.1 (p. 202) returns a
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closure that can be used to produce a function that always adds two

to its argument:

add2to = makeAdder 2 �
With this definition, evaluating map add2to [1, 2, 3] results in [3, 4,

5]. Note that the definition of the function addNto uses a variable n

that is not passed to it. This variable is defined in the immediately

enclosing environment of makeAdder. When makeAdder 2 is evaluated, n

is bound to 2 and a closure of addNto is returned wherein n is bound to

the value n had when the closure was created. Evaluating makeAdder 3

results in a closure where n is bound to 3. If there were no definition

for the free variable n in the function definition, it would be impossible

to produce a closure and the definition would be in error. This would

be the case if we attempted to define g x = x + y in an environment

without any binding for y.

A closure could at times be formed by partially evaluating the clo-

sure by directly substituting the definition, particularly in eagerly eval-

uated languages, but it is tricky to ensure this specialization of the

function takes into account the already available definitions and pre-

serves the semantics of evaluation of the unspecialized function. In-

stead, a closure is most often implemented as an unevaluated function

together with its own environment of definitions. Only once all ar-

guments have been provided to the function will evaluation actually

occur. In this sense, a closure represents a frozen, or suspended, com-

putation: a promise to perform some evaluation once all arguments

are available to the function. Dealing with closures efficiently thus be-

comes an important part of enabling heavy use of higher-order func-

tions in programs written in a functional language – and any func-

tional language that encourages currying encourages frequent use of

higher-order functions.

Since lazy languages only evaluate a term when necessary, they

must make extensive use of suspended computations and only force
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their evaluation as needed. Optimizing the implementation of such

suspensions thus becomes an important part of optimizing a compiler

for a lazy language. Indeed, a common optimization is to introduce

strictness analysis , which attempts to eliminate the construction

of suspensions that will perforce be evaluated in the course of evalu-

ating the program. As an example, a request to display the result of

a computation requires that the entire computation be carried out to

produce the result. There is no question of some part of the result not

being required, since the entire result is supposed to be output. Such

a display function is strict in its argument.

Referential Transparency and Copies

The immutability required to preserve referential transparency can re-

quire significant amounts of copying. For example, sorting a list re-

cursively produces a multitude of new lists. This has nothing to do

with strictness. The solution to this problem is a combination of de-

forestation, also called fusion, and update analysis. deforestation

attempts to eliminate data structures that are created only to be imme-

diately consumed. This can be considered to some extent as a special

case of update analysis , which attempts to discover when func-

tions accepting a data structure and returning a modified copy of that

data structure can be implemented so that they instead update the

original data structure without producing a copy. This can be done

whenever the original data structure will not be accessed in the fu-

ture. With this requirement satisfied, the in-place, destructive update

can be done without destroying referential transparency, since there

are no remaining references through which the update of the original

data structure could be discovered. Mutable references, such as are al-

lowed by the ML family of languages, might seem a way to allow the

programmer to directly intervene to solve this problem, but mutable
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references begin to return us to the complications of static analysis that

we encountered when discussing imperative languages.

Pattern matching plays an important part in modern functional lan-

guages. A naïve implementation of pattern matching that goes through

the patterns case by case, as we described the process of pattern match-

ing earlier, is needlessly slow. More sophisticated implementations (us-

ing, for example, decision trees) can do much better.

Polymorphism and Boxes

In order for a function to be parametrically polymorphic, it must be

able to accept any argument, regardless of the argument’s type. For

this to work, every argument must be superficially similar. Polymor-

phism forces a single, standardized representation of all arguments.

Frequently, this takes the form of a pointer to heap-allocated struc-

tures with a common layout. Even arguments that could be directly

represented, such as integers or floating point numbers, end up being

allocated on the heap in order to look like all the other arguments.

Such a common representation is called a boxed representation

because we can think of putting every data type into a box that makes

them all look the same. To actually use the data, we must unbox it;

when we are done, we must box it again. This boxing can be expen-

sive. The way to lessen this expense is to work at relaxing the con-

straint that required boxing in the first place by allowing functions

to deal with unboxed arguments. Such arguments are cheaper to

allocate and cheaper to work with and can lead to significant gains

in efficiency. Enabling manipulation and use of unboxed arguments,

and introducing an analysis that can discover when it is possible to

substitute unboxed data for boxed data, is an important optimization

for languages with many polymorphic functions. Unboxed types can

even be added directly to the language, which allows the programmer



206 compiling

to directly manipulate unboxed types when efficiency is of particular

concern.

14.7 the back end

The middle end used analysis to optimize the representation of the

program in preparation for translation to run on a von Neumann ma-

chine. The back end is responsible for effecting this translation. This

translation consists in bridging the functional model of computation

and the imperative model of computation. Conceptually, this is done

by simulating functional computation-by-reduction in an imperative,

von Neumann setting.

This simulation is typically performed by an abstract machine .

There are two criteria by which an abstract machine for a functional

language should be judged [108, p. 184]:

• How well it supports the functional language.

• How effectively it can be mapped onto a real machine.

The ultimate goal of the back end and of the abstract machine is

code generation. This can take the form of either code native to the

given platform, or it can take the form of very low-level C code. When

C code is the target language, it is in order to use the C compiler as a

portable assembler. While the native assembly language can vary sig-

nificantly between different platforms, the C language does not. Gen-

erating C code makes it easier to port the compiler to a new platform,

since almost every platform will already have a working C compiler.

Code produced in this way cannot compete with directly generated

native code, but such a comparison misses the point of using C as tar-

get language. This choice is motivated by a desire to have a working

compiler on as many platforms as possible as soon as possible. Native
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code generation can always be added later, but code generation via C

allows the compiler to produce code for unanticipated platforms.

14.7.1 Types of Abstract Machine

A large variety of abstract machines has been proposed. We can roughly

divide these machines into three kinds:

• stack machines

• fixed combinator machines

• graph reduction machines

Stack Machines

Stack machines, such as the Functional Abstract Machine (FAM) [28]

and the SECD (stack, environment, code, dump) machine [70], work by

compiling the low-level intermediate language into stack instructions.

The instruction set is customized to the functional language. Use of

stack instructions makes it simple to apply peephole optimization to

refine the stack code produced.

Stack machines are characterized by their representation of the code

as stack instructions. They might also use a variety of other stacks:

environment, control flow, and data. The environment stack stores en-

vironments of bindings mapping names to values. The control flow

stack keeps track of the order of operations and is used to resume

evaluating an expression after a detour to evaluate one of its subex-

pressions. The data stack is where data structures are allocated and

stored and provides a way to access these structures, as well. Some of

these other components might also be implemented as stacks in other

kinds of abstract machines.
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Fixed Combinator Machines

Fixed combinator machines eliminate the need to maintain an environ-

ment by transforming the entire program into a fixed set of combina-

tors applied to known arguments. The bindings that would have been

provided by the environment are instead made explicit through func-

tion application. The chosen set of combinators varies from machine

to machine; a frequent subset of the chosen combinators are the S, K

and I combinators, which are defined in terms of the lambda calculus

as

S = λxyz.xz(yz)

K = λxy.x

I = λx.x

The elimination of the environment is elegant, as is the very small num-

ber of primitive routines (one for each of the chosen combinators), but

the code size can grow tremendously, and, since each combinator only

performs a minimal amount of work, it requires the evaluation of many

small combinators to accomplish anything. Thus, fixed combinator ma-

chines have a high functional call overhead. Adding more combinators

that do more work to the fixed set of combinators can ameliorate this

somewhat, but as different sets of combinators are more appropriate

for different programs, the problem cannot be eliminated.

Graph Reduction Machines

Graph reduction machines conceive of the program as a graph of func-

tion, argument, and application nodes. Reduction takes place in terms

of the graph at application nodes; the result of evaluation replaces the

application node. The final value of the program is obtained by reduc-

ing the graph to the root node.
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Where stack machines used an environment, and fixed combinator

machines used transformation into a fixed set combinators, graph re-

duction machines take a third route: they transform the entire pro-

gram into a set of combinators by what is known as lambda lift-

ing [37, 43, 63]. These combinators are extracted from the program

itself by introducing additional abstractions over the free variables of

function definitions. As in the fixed combinator machines, an environ-

ment is unnecessary, since binding via lambda replaces binding via

the environment. But the use of these custom combinators, known as

supercombinators [59], avoids the problems associated with the

fixed combinator machines.

Graph reduction machines naturally implement a call-by-need re-

duction strategy. Substitution occurs by substituting a pointer to the

same, shared node. Whenever that node is evaluated and updated, all

pointers immediately have access to the updated value. Thus, every

node is reduced at most once; this at-most-once property is known as

full laziness.

Unfortunately, building and maintaining the graph structure is ex-

pensive. Since reduction is modeled in terms of the graph, the program-

as-graph ends up being interpreted at runtime, which also limits ex-

ecution speed. Because of the problems posed by conventional archi-

tectures for these abstract machines, there were attempts to implement

hardware that provided direct support for graph reduction (sometimes

extending support to parallel graph reduction).

Compiled graph reduction machines work around this problem in

order to achieve good performance on conventional architectures. They

replace an explicit graph structure with code that acts as if the graph

were present. They thus preserve the conceptual simplicity afforded

by viewing the program as a graph while avoiding the expense of

building and updating a graph data structure. A variety of refinements

and variations on this theme are possible [26, 62, 79, 99, 108, 115].
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14.7.2 The Abstract Machine Design Space

We have briefly described abstract machines in terms of several differ-

ent ways they encode the functional program and evaluate it. Another

way to describe an abstract machine is in terms of the decisions made

in its design. This requires giving an example of the other choices that

could have been made.

As you might have deduced from our earlier discussion, the two

most important choices are the evaluation strategy implemented and

the way the environment is handled. The major decision for evaluation

strategy is between call-by-value and call-by-name. Call-by-need eval-

uation is merely a variation on call-by-name that implements laziness.

There are many variations on these principal strategies in terms of

how precisely they are implemented. The primary variations concern

how function application is performed. The two options go by the

suggestive names of push/enter and eval/apply. In the push/enter

approach, a function call f x y is evaluated by pushing x and y on

the stack and entering the code for f. It is up to f itself to determine

whether sufficient arguments are available; if insufficient arguments

are provided, the function returns a closure; if sufficient are available,

it completes the application and returns the result. In the eval/apply

model, the caller determines whether sufficient arguments are avail-

able and controls the application process. Both approaches can be used

with any evaluation strategy; eval/apply has historically been favored

for call-by-value and push/enter for call-by-name, but research [78]

suggests eval/apply is preferable in both cases. Surprisingly, this con-

clusion is reached, not on the basis of a difference in performance (the

differences are negligible), but in a reduction in the complexity of the

compiler that accompanies use of eval/apply.

Environment management can be done using explicit environments

or via combinators. If explicit environments are used, there is a choice
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of the type of environment: should definitions be shared or copied?

That is to say, when entering an enclosing lexical scope, should the

closure direct accesses to free variables to enclosing closures, creat-

ing something of a tree-like structure, or should each closure receive

copies of its needed values? Sharing eliminates time spent copying but

increases the time spent traversing data structures to reach the point of

variable definition; copying requires time and space be spent making

copies, but each function closure then retains only needed bindings

(there is no reason to copy over unneeded ones) and access to those

bindings is possible in constant time.

If copying is chosen to implement environments, there is one more

question: when should the copy be performed? Different abstract ma-

chines have different answers to this question. Some possibilities are:

• when a function is entered;

• when a closure is built and again when it is entered; and

• only when a closure is built.

We will not discuss these further; the interested reader is referred to an

article by Douence and Fradet [42] and associated technical reports [40,

41].

We mentioned that call-by-need can be seen as a variation on call-

by-name. Call-by-name necessitates sharing and updating of closures.

This updating could be performed in two ways, either by the caller

or by the callee, but all implementations use callee-update since this

prevents every caller of the same callee from having to test the callee

to see whether it has been evaluated or not. Instead, the callee, if not

previously evaluated, sparks its evaluation and updates itself with the

result. The callee of course also returns the result to the caller that

forced its evaluation.
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Graph reduction machines can be seen as implementing these same

strategies but in terms of graphs. The details of transformation be-

tween the two perspectives are beyond the scope of this discourse.

14.8 bibliographic notes

Garbage collection is an interesting topic in itself comprising a variety

of algorithms with a variety of purposes and no apparent optimum

approach. The state of the art as of 1995 is described in a textbook

by Jones and Lins [64]. An alternative to garbage collection is region in-

ference, which is a static analysis that enables the compiler to hardcode

at compile-time the work usually performed by a dynamic garbage col-

lector [126].

McCarthy [81] describes the creation of the first Lisp interpreter. The

first ML interpreter was implemented in Lisp [see 47, footnote 5]. By

the start of the 1990s, Lisp offered a sophisticated programming envi-

ronment [72]. Cardelli [28] describes how an ML compiler was devel-

oped based on the “implementation folklore” of various Lisps rather

than using the style advocated by compiler textbooks directed towards

imperative languages. The incremental, on-the-fly compilation used by

Lisp systems and some interactive compilers for functional languages

is also known as just-in-time compilation and has its own inter-

esting history [12]. Virtual machines are also an active topic of research

in themselves [119], as is how they relate to functional languages and

abstract machines [1, 2, 3, 4, 36].

A brief history of CPS is given by Flanagan, Sabry, Duba, and Felleisen

[44]. While they suggest the argument over whether compiling primar-

ily through CPS is worthwhile has been settled against CPS, Kennedy

[66] at least believes CPS provides distinct benefits in simplicity com-

pared to other, later intermediate representations. The best resource on

CPS, at least as of the early 1990s, is Compiling with Continuations [10].
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Speaking of intermediate representations, we should note that ssa can

actually be seen as functional programming [10].

The suspensions created to represent “frozen” computations during

the compilation of lazy languages are also known as thunks [60].

Thunks can be used to simulate call-by-name within a call-by-value

evaluation strategy [50]. Strictness analysis, which can be used to avoid

the creation of thunks, can be seen as a case of order of evaluation

(or “path”) analysis [21]. Strictness optimizations can cause surprising,

unwelcome behavior [20].

Deforestation can be performed via so-called short cuts [46]. Oppor-

tunities for deforestation can be recognized through higher-order type

inference [30]. The elimination of unnecessary construction of interme-

diate data structures is addressed more generally by stream fusion [33].

Update analysis is discussed by Bloss [22]. Another surprising source

of optimizations for functional aggregates are loop optimization tech-

niques developed for use in scientific computing [9].

Call-pattern specialization [99] can be used to reduce the cost of the

pervasive use of algebraic data types and function definition through

pattern matching. Efficient pattern-matching nevertheless requires some

finesse [73]. Unboxed representations and their benefits are discussed

by Peyton Jones and Launchbury [106], Thiemann [124].

We did not discuss the problem of space leaks [134] and its partial

solution through black-holing [65] for graph reducers. Black-holing

makes it impossible to back up in the event of an interrupt or other

exception, requiring another solution [115] if we wish to support in-

terrupts while avoiding the space leaks otherwise prevented by black-

holing.

Douence and Fradet [42] describe an overarching framework for de-

scribing and decomposing abstract machines. Our summary of the

abstract machine design space drew heavily on their work. Another

view [3] of abstract machines makes a technical distinction between
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abstract machines, which operate directly on lambda terms, and vir-

tual machines, which operate on lambda terms compiled into their

own instruction set. It is also possible to go between functional evalua-

tors and abstract machines that implement the evaluation strategy via

a state transition system [2].
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C A S E S T U D Y: T H E G L A S G O W H A S K E L L C O M P I L E R

The discussion of the previous chapter was limited to generalities. We

now look at a specific implementation of functional compilation. The

Glasgow Haskell compiler is an actively developed, mature compiler

for the lazy functional language Haskell. It implements numerous ex-

tensions to the standard language and provides a variety of additional

tools and libraries, many of which are used in developing the compiler

itself.

We gave a brief history of the Haskell language towards the end of

Chapter 13, history. The Glasgow Haskell Compiler (GHC) is today

the principal Haskell compiler. It is used both to produce compiled

Haskell programs doing real work as well as for research into func-

tional languages and their implementation. GHC is written primarily

in Haskell itself, though some parts (including most of the runtime

system) are implemented in C.

Compilers are very complex programs made up of a number of inter-

acting, complex parts. We make no pretense of describing the Glasgow

Haskell compiler in toto. Our study is guided by two questions:

• How does GHC use the fact it is compiling a functional language

to its advantage?

• How does GHC solve the problems a functional language poses

for compilation?

Answering these questions entails looking at specific optimizations

enabled by functional languages and optimizations required to effi-

ciently compile functional languages. All optimizations are carried out
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using specific intermediate representations, so we will describe the in-

termediate representations used in these compilers. In the course of

discussing solutions to problems introduced by functional languages,

we will also briefly discuss GHC’s implementation of garbage collec-

tion and pattern matching. We will also look more closely at how it

transforms the source functional program into something executable

in the target, von Neumann environment.

15.1 intermediate representations

The Glasgow Haskell compiler uses several progressively simpler in-

termediate languages. We can roughly equate each language with a

certain phase in compilation:

• The front end uses a representation of Haskell itself.

• The middle end uses a much simpler core language called, un-

surprisingly, Core.

• The back end uses the STG and Cmm languages.

The first intermediate representation is produced and used by the

front end. This representation is a representation of Haskell itself using

data types and constructors. GHC takes the unusual step of perform-

ing type inference using what is fundamentally the source language

rather than a desugared, simpler, core language. This makes it easy

for the compiler to report errors in terms of the code provided by the

programmer.

The Haskell representation is then desugared into a very simple core

language called core . Core encodes values alongside their types, and

so optimizations using the Core representation can take advantage of

type information. This type information includes information on type

equality constraints and coercions. Further details do not concern us,
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but can be found in an article by Sulzmann, Chakravarty, Jones, and

Donnelly [123].

Possibly one of the greatest advantages of carrying through types

into the intermediate language, however, is not that they become avail-

able for optimization, but that they make it easy to catch errors intro-

duced during development, since such an error is likely to introduce

an erroneous term that can be caught by a simple type check. As all

optimizations are performed as Core-to-Core transformations, and op-

timizations can interact in complex ways, error recognition by cheap

type checking is very helpful.

The back end uses the STG (for Spineless Tagless G-machine) lan-

guage. Core is transformed into STG through an intermediate step.

The Core representation is first transformed into a Core representation

of the program that is closer in spirit to STG. Only after this transfor-

mation is the Core representation transformed into an STG representa-

tion.

STG is the language of an abstract machine, the Spineless Tagless

G-machine. This machine was designed for efficient translation into

imperative code executed by a conventional, von Neumann computer.

However, GHC does not translate STG code directly into native code.

It instead translates it into Cmm. Cmm is GHC’s implementation of

C-- (read “C-minus-minus”; see Peyton Jones, Ramsey, and Reig [110]

for a description), a language that closely resembles C but is somewhat

simpler and lower-level.∗

Once the program is represented in Cmm, it can be compiled to

native code in two different ways: directly, or through C. (The choice

is the user’s, though the default is direct generation of native code

from the Cmm representation.)†

∗ GHC neither uses nor requires all capabilities of C--, and so Cmm does not imple-
ment those unneeded capabilities. Other small differences combine to make Cmm a
dialect of C--, which is itself a moving target. Current information on C-- is available
from http://www.cminusminus.org/.
† Another transformation that would turn the generated Cmm into continuation pass-

ing style Cmm code is currently under development.

http://www.cminusminus.org/
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Direct code generation proceeds by transforming the Cmm represen-

tation into a data type representation of assembly instructions. Where

the front end began by transforming the source code into a data type

representation of Haskell code, the back end finishes by printing out a

representation of the data type encoding of the assembly instructions.

The resulting code can then be assembled into an object file.

Compilation by C is messier, less elegant, and appears to be depre-

cated. Since Cmm is virtually a subset of C, it is not difficult to generate

something that can be compiled as a C program. This is compiled with

any available C compiler. Since the program is not really a C program

but a representation in C of a Spineless Tagless G-machine program,

some of the assumptions made by the compiler are erroneous and re-

sult in suboptimal code. The assembly language code produced by the

C compiler is thus postprocessed as a last optimization. The primary

effects of this postprocessing are the removal of many unneeded regis-

ter save and restore sequences and the rearrangement of the memory

layout of the assembly code. This results in a corresponding rearrange-

ment of the object file produced when the assembly code is assembled.

15.2 garbage collection

GHC implements generational garbage collection. Generational garbage

collection is based on the assumption that “young” objects – those that

have been recently allocated – are more likely to have died than older

objects. Generational garbage collectors thus focus their garbage col-

lecting efforts on younger objects. The age of an object is described in

terms of generations. The garbage collector assigns all allocated objects

to one of a set of generations. A newly created object belongs to the

first generation. During collection, pointers in objects of those older

generations that are not being collected are used as roots to determine

which objects of the generations undergoing collection are live. Objects
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that survive a certain number of collections are promoted to the next

generation.

Garbage collection is invoked frequently to keep heap use under

control; since most garbage collections only examine younger gener-

ations, such minor collections are inexpensive. When a minor collec-

tion will not suffice to reclaim sufficient memory, a major collection is

performed using a mark-compact algorithm: this leads to all genera-

tions being examined, so that storage allocated to older objects that, by

virtue of their age, had survived collection past the end of their lives

is reclaimed.

GHC’s garbage collector is of the so-called “stop the world” vari-

ety. During garbage collection, only the garbage collector is active. All

computation ceases. This plays a surprisingly important role in ensur-

ing that GHC interfaces well with the outside library (GMP, the GNU

Multiple-Precision Library) that it uses to provide arbitrary-precision

arithmetic. The arithmetic library is implemented in C; if garbage col-

lection occurred while a library function was being executed, garbage

collection could relocate the data the function was was working with

out from under the function’s pointer to that data. However, because

the garbage collector requires that the world be stopped, it is only in-

voked when all running threads have reached a sequence point; since

none of the functions provided by this library have such a stopping

point, they cannot be interrupted by the garbage collector.

15.3 pattern matching

Pattern matching is in fact a core part of the Core and STG repre-

sentations. Even conditional expressions are handled through pattern

matching: if B then X else Y is written using a case expression as case

B of {True -> X; False -> Y}. B is called the expression scrutinized
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by the case expression. In the Core and STG languages, case analysis

forces evaluation of the expression scrutinized by the case analysis.

Expression evaluation is a necessary part of pattern matching in

these intermediate languages. To explain why, we must describe how

data type declarations are treated. As discussed earlier, a declaration

such as data Tree a = Leaf a | Branch (Tree a)(Tree a) creates an al-

gebraic data type with two constructors, Leaf and Branch. The ordering

of these declarations is considered significant in Core and STG, be-

cause each constructor is assigned a discriminator integer, beginning

with 0 and increasing by one for each constructor declaration. Thus,

Leaf would be assigned 0 and Branch would be assigned 1.

Pattern matching uses this discriminator to decide which branch of

the case expression should be chosen. After evaluation of the scruti-

nized expression completes, its discriminator is examined; a jump is

then made directly to the corresponding branch of the case expres-

sion. The simplicity of this system is due to the Spineless Tagless G-

machine’s inbuilt support for algebraic data types.

15.4 optimizations

All optimizations are performed as Core-to-Core transformations [109].

Some optimizations, such as strictness analysis and let-floating, re-

quire significant nonlocal analysis. Some can be done in the course

of several local simplification passes.

Some of these local simplifications are specified using a rewrite rule

syntax [105] that is available to all users of the Glasgow Haskell com-

piler. Others are more complex, such as function inlining. Inlining ba-

sically treats a function call as a macro; it replaces the call with an

instance of the body of the function. (There are, as always, some com-

plexities [103].) Inlining a function eliminates the need to perform a

pipeline-unfriendly jump to the code for the function during evalua-
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tion. The Glasgow Haskell compiler uses heuristics to determine when

a function should be inlined; it will also inline a function when the

programmer has specified through a source-code annotation that the

function should be inlined.

Strictness analysis [107] attempts to discern which expressions will

perforce be evaluated. The code can then be optimized to avoid the

costs of unnecessary laziness: no suspension need be created in the

first place for the expression, and so the expression will not need to

be forced and updated later. Thus, strictness analysis can be used to

avoid a fair amount of work.

The let-floating transformations are another class of non-local trans-

formations. Let floating describes the effect of the transformation: a let

or letrec binding is shifted from one place in the source code to an-

other. Shifting here should be understood in terms of depth within an

expression: within a lambda abstraction, the body of a branch of a case

expression, or the expression scrutinized by a case expression. There

are advantages and disadvantages to floating let-bindings both in and

out, as well as some local transformations that are generally helpful;

the specific application of let-floating to a given case is decided, as is

usual in optimizations, through some heuristic rules. Further informa-

tion on let-floating can be found in the article by Peyton Jones, Partain,

and Santos [104].

Of all these optimizations, strictness analysis is the only one we can

plainly categorize as an example of an optimization necessitated by the

inherent inefficiency of a lazy language. The rest of the optimizations

are little different from the code tuning transformations an imperative

compiler might perform using static single assignment form;∗ indeed,

the imperative optimization stalwart, common subexpression elimina-

tion, can also be applied to a Core program.

∗ This analogy is more accurate than you might at first think; ssa can actually be
looked at as transforming an imperative program into an equivalent functional pro-
gram to ease analysis [11].
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15.5 going von neumann

The transformation that reroots the functional program in the impera-

tive, von Neumann paradigm is the transformation from the program’s

STG representation to its Cmm representation. Of course, by the time

the program has been transformed into the STG language, a signifi-

cant amount of analysis and optimization has been performed with

the aim of producing code that is more efficient (both in space and

time) within the von Neumann setting. Since all the “heavy lifting”

has been done using other, more complex representations, the actual

translation from STG to Cmm is fairly direct. That is not to say that it

is simple; there are many details concerning the precise memory lay-

out of a closure, the accommodation of unboxed types, and heap and

control flow management.

While we can identify the transformation from STG into Cmm as the

moment that the functional program becomes a viable imperative pro-

gram, this single aim influences the entirety of the compiler’s design.

There are many other compilers for many other functional languages,

all complex and all implementing their own approach to functional

compilation, but with this brief survey of the Glasgow Haskell com-

piler, we bring our discussion of functional compilation to a close.

15.6 bibliographic notes

Hudak et al. [58, §9] places the Glasgow Haskell compiler in the con-

text of other implementations of the Haskell language. The version of

GHC considered here is version 6.8.2. More information on GHC is

available from its website, http://haskell.org/ghc/. The GHC Com-

mentary, written by the developers for other developers and anyone

else interested in the compiler’s internals, is available at http://hackage.

haskell.org/trac/ghc/wiki/Commentary; it was very helpful in prepar-

http://haskell.org/ghc/
http://hackage.haskell.org/trac/ghc/wiki/Commentary
http://hackage.haskell.org/trac/ghc/wiki/Commentary
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ing this chapter. The source code itself is also well-commented: if you

should wish to explore functional compilation in more depth by re-

viewing the code for a compiler, you could scarcely hope for a compiler

with better documentation.

The Spineless Tagless G-machine [101, 108] refines the Spineless G-

machine of Hammond [49], which itself is a refinement of Johnsson’s

G-machine [62]. Around 2007, reconsideration of the tagless part of the

Spineless Tagless G-machine led to the introduction of tags indicating

whether or not a closure has been evaluated and, if so, the discrimi-

nator of its data constructor in order to reduce branch mispredictions

encountered during case analysis and cache pollution caused by un-

necessarily loading the info table of the closure. This work is described

by Marlow et al. [79].
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C O N C L U S I O N

This chapter focused on the functional language family. After we in-

troduced the theory at its roots, we sketched the history of the func-

tional family, from early predecessors such as LISP and influential

non-functional languages such as APL to today’s mature functional

languages. Many approaches to compiling functional languages have

been advanced, and we discussed some of them and provided a some-

what more in-depth case study of an actual compiler.

• In Chapter 12, theory, we revisited the concept of type and ex-

plored some of its complexities. We then developed the lambda

calculus and introduced constants and types into its framework.

When we discovered this prevented us from employing recursive

definitions, we introduced a family of typed fixed point opera-

tors.

• In Chapter 13, history, we looked at the history of the func-

tional family through the lens of its influential languages. Among

the predecessors of today’s functional languages, we discussed

McCarthy’s LISP, Landin’s Iswim, Iverson’s APL and Backus’s

FP. We then turned to modern functional languages. After de-

scribing common defining features, we looked at the two pri-

mary branches of the functional family, the eager and the lazy

languages. Eager languages, such as ML, use what amounts to

call-by-value as their reduction strategy. Lazy languages, such

as those created by Turner and their successor of sorts, Haskell,

implement what amounts call-by-name.
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• In Chapter 14, compiling, we described in broad terms how

functional languages are compiled. Functional languages are pri-

marily a “sugaring” of the lambda calculus, and by first desug-

aring them, we reduce them to a simple, core language that is

only slightly more abstract than the lambda calculus itself.The

core language representation is then compiled into instructions

for an abstract machine of some variety, and it is this abstract

machine that runs the program: the compiled representation, in

some sense, encodes both the program and a virtual machine to

run the program.

• In Chapter 15, case study : the glasgow haskell com-

piler, we looked at how the Glasgow Haskell compiler actually

compiles a functional language. This case study provided con-

crete examples in contrast to the generalities of our discussion

in Chapter 14, compiling.



E P I L O G U E

The body of this work is through. This epilogue reflects on what you

have just read about the functional and imperative families and offers

some thoughts on future developments.

looking back

Imperative and Functional Languages

The models of computation that underlie both the imperative and func-

tional families were developed around the same time, but the develop-

ment of the von Neumann machine set imperative languages on the

path to ascendancy.

At first, these machines could be programmed only by manipulation

of their hardware. The development of software brought assembly lan-

guage, the prototypical imperative language, to the fore. Even today,

assembly language cannot be beat for the control over the underlying

machine it brings, but this control comes at great cost: in program-

ming time, and in portability. It takes a long time to write a substantial

amount of assembly code, and the code is then tied to the platform it

was written for.

In the 1950s, Fortran brought imperative languages to a higher level

of abstraction; later imperative languages brought more powerful ab-

stractions. Still, early Fortran remains, though primitive, recognizably

imperative. Within a decade, Lisp would be born. Lisp was an impor-

tant predecessor for today’s functional languages: Lisp made higher-

order functions available, and so one faces similar problems compiling
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Lisp as compiling today’s functional languages. But Lisp started as

Lisp and continues as Lisp: there is no mistaking Lisp code for any-

thing but Lisp code, and Lisp style is quite distinct from the style of

modern functional programming.

It was another decade before ML made its debut in the 1970s. It

started as an interpreted language without the concept of algebraic

data types, which was borrowed later from another language. The lazy

branch would not begin to bear fruit until the 1980s. Over the next two

decades, the functional language family would grow into its modern

form.

In order to have any hope of displacing assembly as the dominant

programming language, Fortran had to be fast, and it was designed

from the outset with speed in mind. Lisp grew up with artificial in-

telligence and was adopted because it was very well-suited to pro-

gramming in that domain. It competed on features and the power of

its abstractions, not on speed. It pioneered garbage collection, but it

took decades of research to get past the “stop the world” effect that

scanning the heap and scavenging useful data can cause if done with-

out sufficient sophistication. Since many application domains for pro-

gramming languages demand speed, Lisp was only ever a marginal

language outside symbolic processing. The imperative family would

continue to look on garbage collection as an expensive and unneeded

luxury until languages developed for object-oriented programming

showed that it can bring new levels of programmer productivity.

ML grew out of work on a theorem prover, and it too was devel-

oped (using Lisp, no less) to serve its application domain. Its type

system could provide guarantees for theorem proving that a weaker

system could not. Significant work was required to make both Lisp

and ML run decently fast on “stock hardware.” Partly for this reason,

many persons researched alternative computing architectures meant

to support such languages directly, just as the von Neumann architec-
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ture naturally supports programs written in imperative languages. But

stock hardware eventually won out, and it was only in the 1990s that

optimizations were discovered to make lazy functional languages at all

competitive with compiled imperative languages on stock hardware.

The bottom line, for all programming languages, is the machine they

must eventually run on. This has been a blessing for imperative lan-

guages (at least when uniprocessors were the standard) and a curse for

functional. Functional languages also suffer from requiring of the pro-

grammer a fundamentally different style of programming than other

kinds of languages.

Backus’s criticisms of imperative languages, leveled during his Tur-

ing award lecture, continue to be valid. Imperative programming is

still not high-level enough – to use Backus’s phrase, it still amounts to

“word-at-a-time programming” – and many of the dominant impera-

tive languages continue to require programmers to supply redundant

type annotations. This is ameliorated to some degree by the rise of

dynamically-typed scripting languages, some of which (Groovy, Bean-

shell, Pnuts, Jython, and JRuby, for example) are implemented on top

of the very platform designed to host the more heavy-weight Java, but

dynamic typing gives up the benefits of static typing offered by func-

tional languages.

Functional programming languages stand in stark contrast to imper-

ative languages. The contrast might be too severe: their strangeness

might put off more programmers than it attracts. It requires a signifi-

cant investment of time and effort to transition from imperative to func-

tional programming, especially since many of the techniques learnt in

an imperative setting cannot be transferred directly to the functional,

including even common data structures.

Today’s functional programming languages have finally begun to

overcome the slowness inherent in simulating β-reduction on a von Neu-

mann machine, but Backus’s primary criticism of them was not based
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on their being slow, but on their not being “history sensitive.” They

seem to have no way to store information from one run of the pro-

gram to the next; the lack of state cripples their usefulness. Backus

rightly pointed out that this has been a major source of trouble; he

gave the example of pure Lisp becoming wrapped in layers upon lay-

ers of von Neumann complexity.

Today’s functional languages have tried to solve the problem of state

either by limiting its use and making it explicit, in ML via reference

cells and in lazy languages through either monads or streams. The ML

concept of reference cells is virtually identical to the concept of a vari-

able in imperative languages. We will not say anything of monads here.

Streams can be used in lazy languages to represent interaction with the

world outside: the program is provided with an infinite stream of re-

sponses as input and produces an infinite stream of requests. Since the

language is lazy, it is possible to avoid evaluating any input responses

until a request has been made, such as to open a file. This often leads

to “double-barreled” continuation passing style, where one barrel is

used if the request succeeds and the other is used if the request gar-

ners an error response. These solutions avoid layers of von Neumann

complexity, but at the cost of a different variety of obtuseness.

Imperative and Functional Compilers

Imperative and functional compilers have no trouble with lexing and

parsing. It’s in the middle and back ends that problems present them-

selves. Here, they must go head to head with the problems inherent in

their languages.

Imperative languages make extensive use of pointers and other aliases

and frequently reassign names (variables) to different values. This com-

plicates analysis of data flow in the program and limits the optimiza-

tions that can be performed. Imperative compilers have historically
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Listing 16.1: A tail-recursive factorial function

fac n = fac’ n 1
where fac’ 1 accu = accu

fac’ n accu = fac’ (n - 1) (n*accu) �
had difficulty handling recursion, as it is difficult to tell when a given

recursive call can reuse the same stack space rather than requiring allo-

cation of a new stack frame. Recursive calls that pass all needed infor-

mation to the function itself for the next call do not require allocation

of a new stack frame, as the return value will have been computed by

the time the recursion bottoms out. This kind of recursion is known as

tail recursion. Listing 16.1 on page 231 gives a common example

of this: a version of the factorial function that makes use of an accu-

mulator argument to store the in-progress computation of the final

value. The function fac serves to hide this accumulator function from

the user; it simply calls the actual worker function with its argument

and the initial value of the accumulator.

Imperative languages also have difficulty dealing with concurrency

and parallelism. It is here that the von Neumann bottleneck becomes

most apparent. The reliance programs written in imperative languages

have on constant access to a common store leads, in a concurrent set-

ting, to problems with too many threads needing access to the same

part of the store. Locking mechanisms can keep this model workable,

but they require a significant amount of trouble on the programmer’s

part.

Functional languages have their own problems. The most obvious

ones boil down to the mismatch between their computational model

and that of the machine their programs must run on. It is hard to carry

out reduction efficiently. The necessity of closures leads to a significant

amount of overhead for running programs and a significant amount of

added complexity in the implementation of compilers for functional

languages.
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Functional programmers’ extensive use of lists and similar data struc-

tures can also lead to insufferably slow code without optimization. Ei-

ther the programmer must be very careful and aware of the code that

will be produced by the compiler for a given function, or the compiler

must perform clever optimizations. Lazy languages only complicate

this with their unpredictable evaluation order. Slight differences in the

way a function is written can lead to completely different time and

space complexities. Lazy languages also require the development of

strictness analyses and associated optimizations.

Purity can in fact be considered a burden from the compiler’s point

of view. Referential transparency simplifies analysis and transforma-

tion, but it also necessitates a new class of optimizations. Update anal-

ysis attempts to discover when a given reference will never be used and

reuse its associated data structure. Operations must be implemented

such that the greatest amount of each data structure possible is shared

and reused, lest space be wasted. For lazy languages, a new class of

problems, space leaks, rears its ugly head, surprising programmers

and leading to ad hoc analyses and optimizations meant to squash

some of the most egregious examples.

Needless to say, work on compiling both functional and imperative

languages continues.

looking forward

Functional languages are growing up. They are beginning to see in-

creasing use in industry and increasing interest among programmers.

They also hold out promise as a way to deal with the rise of ubiquitous

symmetric multiprocessors, which brings the problems of concurrent

programming out of scientific and network programming and into pro-

gramming in general.
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Functional languages also continue to influence imperative languages.

Java brought garbage collection into the mainstream. Several impera-

tive languages, including Microsoft’s C#, now allow anonymous func-

tions; the programming language Python borrowed list comprehen-

sions from Haskell; the spirit of declarative programming, if not explic-

itly functional programming, shows through in the language-integrated

query (LINQ) facilities added to the .NET platform. Functional lan-

guages have been implemented for both the Java virtual machine (Scala)

and Microsoft’s .NET platform (F#, developed and promoted by Mi-

crosoft itself).

Functional programming, and declarative programming in general,

appears to promise increased programmer productivity. As program-

ming time continues to become the limiting factor in what is doable

in software, this could lead to increasing adoption of functional lan-

guages. At the same time, imperative languages have begun to assume

more elements of functional programming. It is possible that some-

thing like Objective Caml or Microsoft’s F# will become the dominant

programming language in the next couple of decades.

These families are merging in some ways, but they also continue to

develop in their own peculiar ways. Object-oriented programming has

led to aspect-oriented programming; there is continuing research in

the functional programming community on more powerful type sys-

tems, including those embracing dependent types and observational

type theory. There are also attempts to extend functional languages in

the direction of logic languages.

The families of programming languages continue to diversify, branch

out, and join together. Their fortunes also change as new languages

grow in popularity and old ones fall out. Old languages are some-

times made new again through a revised definition or new extensions

that breathe life back into them. These are exciting times.
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suggestions for further research

This thesis touched on a wide variety of subjects, from computer ar-

chitecture to formal language theory and automata, parsing, optimiza-

tions, imperative and functional languages, the lambda calculus and

type theory. Each of these subjects has already had much said about it.

References to related work have been given in the bibliographic notes

at the end of each chapter.

If paradigms have captured your fancy, you might want to investi-

gate a paradigm we did not have time to explore, logic programming.

This paradigm is exemplified by the language Prolog. Work is ongoing

to make constraint programming, an offshoot of logic programming, a

viable paradigm. We mentioned attempts to blend functional and im-

perative features in a single language; there have also been attempts to

create so-called functional logic languages, such as Curry.

Work to date on virtual machines for functional languages has ap-

proached them from a formal point of view. There is a significant body

of literature treating virtual machines in themselves that explores op-

timizing and improving them. Applying this literature to the virtual

machines used with functional languages could perhaps yield interest-

ing results.

bibliographic notes

Algebraic data types were borrowed by ML from Burstall’s Hope [27].

We referred frequently to Backus’s influential 1978 Turing award lec-

ture [13].

Functional languages have seen significant use in industry. Develop-

ment of Objective Caml is funded in part by a consortium including

Intel, Microsoft, Jane Street Capital [91], and LexiFi; the last two com-

panies are involved in trading and finance. Hudak et al. [58] give a
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list of companies using Haskell along with descriptions of how they

use the language in addition to examples of the language’s impact in

higher education. Wadler∗ maintains an extensive list of applications

of functional programming. Appel† keeps up a smaller list of imple-

mentation work done using ML. Wadler [135] provides an insightful

analysis of why functional languages are not used more.

Observational type theory [8] is an interesting and powerful idea,

while dependent types are powerful enough to express a variety of

concepts that must otherwise be built into a language or done with-

out [7, 84]. Meijer has worked to introduce concepts from functional

programming into the imperative programming world, and he pro-

vides an excellent overview [86] of this work.

∗ “Functional Programming in the Real World,” http://homepages.inf.ed.ac.uk/
wadler/realworld/.
† “Implementation work using ML,” http://www.cs.princeton.edu/~appel/smlnj/

projects.html
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